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PREFACE

The given book is the second, revised and supplemented edition of

a book of the same name published in 1963. Approximately 60 percent of

the text was rewritten during preparation of the second edition. It is

devoted to problems of increasing the noise stability of radar systems

by means of optimum (matched) filters and pulsed signal storage devices.

Main attention is devoted to applied problems of efficient construction

and calculation of the indicated devices.

The results of the author's investigations, conducted during the

period 1957-1966 are systematically outlined in the book. Moreover,

the papers of other authors published in the Soviet and foreign press

were also used. The latter is related mainly to Chapters 1, 3, 4, 6,

11 and 12.

The author is deeply grateful to Corresponding Member of the USSR

Academy of Sciences Yu. B. Kobzarev, who turned the author's attention

during many conversations to a number of unresolved problems in the in-

dicated field of electronics and made valuable comments on the results

t of solving them.

The materials outlined in the book have been repeatedly reported

at scientific conferences, seminars and meetings.

The author is truly grateful to all those who sent their comments

on the first edition of the book and who participated in discussion of

it and especially to Yu. B. Kobzarev, A. Ye. Basharinov, B. R. Levin,

N. I. Chistyakov, A. P. Manovtsev, N. T. Petrovich, A. G. Saybel',

JI I I I" I I ... -r -r I I1



M. Stanecu and K. P. Polov. Moreover, gratitude is expressed to Yu. I.

Pakhomov, who together with the author wrote section 3.5 and item 2 of
section 6.5 of the book and made a number of interesting comments on
the first edition of the book, and to M. M. Leshchinskiy, who partici-
pated in writing Chapter 12 and who kindly offered to the author the
materials outlined in section 10.6.

The author is deeply grateful to B. N. Mutyashev and V. I. Tikhon-
ov for very careful review of the manuscript of the second edition of

the book and for useful advice directed toward improving it.

All remarks on the book's contents will be greatfully accepted by
the author.
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INTRODUCTION 5

Increasing the noise stability of radio reception has always been

one of the most important problems of electronics (1]. The noise which

inevitably enters a receiver together with signals or that occurs in it

distorts the transmitted messages and thus limits its sensitivity. By

attenuating the harmful effect of noise, one can increase the reliabil-

ity of message transmission and the effective range of radio engineer-

ing systems.

The problem of a significant increase of the effective range of

radar systems, which can be solved only by significantly increasing the

average power of transmitting devices, increasing the overall dimen-

sions of antennas and increasing the sensitivity of receivers of these

systems, is specifically very timely. However, a further increase of

transmitter power and the overall dimensions of antennas is fraught

with such extensive engineering difficulties (2, 3] that signifcant

results should not be expected in this direction. Moreover, increasing

transmitter power inevitably leads to the following undesirable

consequences:

--complication of the design of the SHF generator, pulsed modula-

tor, power supply device,and antenna-feeder waveguide devices;

--an increase of operating expenses due to an increase of energy

consumption and complication of maintenance;

3



-- an in(;rease of the noise level created by the given RLS [radar
station] to other detection, control, communications and television

systems and so on;

-- an increase of the electromagnetic field intensity and conse-
quently of the degree of the harmful effect on maintenance personnel

and other people located nearby.

Therefore, increasing the noise stability (sensitivity) of radio 6

receivers is one of the promising, economically feasible and practical-

ly possible methods of significantly increasing the effective range of
* radar systems.

One can achieve an increase of receiver sensitivity by different

methods: by cooling their input circuits to temperatures close to
absolute zero, by using quantum-mechanics and parametric amplifiers and
by using devices that carry out optimum separation (filtration) of

* pulsed signals from noise.

Among these methods, the use of optimum filters that accomplish
optimum separation of pulsed signals from noise [4-61 and devices that
are practical approximations of these filters [7] occupies an important

position.

The abundance of articles in Soviet and foreign periodical liter-

ature on these problems specifically indicates the timeliness of opti-

mum filtration problems.

The first edition of the book [71 was written in 1961-1962 when

the properties of optimum filters, like the capabilities provided by
using them, were known to a comparatively small range of radio engin-
eers. The situation has now changed fundamentally. The main concepts
of optimum filtration theory and pulsed signal storage have become

generally known and have become part of many textbooks of vuzes (high-
er educational institutions] [8-101# while optimum filters and storage

devices have achieved wide application.
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A large number of monographs on statistical methods of. signal sep-

aration from noise has been published during the past few years. The
most significant of them are the book of L. A. Vaynshteyn and V. D.

Zubakov [11], S. Ye. Fal'kovich (12], L. S. Gutkin [13], Ya. D. Shirman

and V. N. Golikov (101, a collective of authors with editing by G. P.

Tartakovskiy [14] and V. I. Tikhonov [151. The very interesting books

of Woodward [16], Middleton 117], Davenport and Ruth [18] and Helstrom

[19] have been translated into Russian and published. However, the
"engineering direction of theoretical investigations is still inade-

quately expressed" (10] in most of the published papers.

The first edition of the book was written with regard to the fact 7

that we did not know of a single book in which the statistical methods

of signal separation from noise could be considered in detail with an
engineering, applied slant. The following hypothesis of the authors of

[111 is very typical in this regard: "To avoid confusion, let us note

that optimum filters and optimum detectors have been investigated in

the book only from the viewpoint of their mathematical operations
which filters and detectors should perform on the received mixture of

signals and noise; problems related to practical realization of the

corresponding circuits remain beyond the scope of the given book."

The first edition of the book was sold out rapidly and the need for

a book in which problems of optimum filtration of signals from their

mixture with random noise, storage of repeated pulsed signals and build-

ing of corresponding devices would be considered from the engineering
viewpoint, increased even more. The second edition was prepared in

this respect.

It has as its purpose a systematic outline of the properties of

optimum filters and building of these filters for single pulsed signals

and sequences of them, to determine the operating mechanism of these

filters and to discuss possibilities of practical realization of them,

to consider the properties of storage systems with delayed feedback,

which are a practical approximation of optimum filters for sequences

of pulsed signals, and to outline threshold signal theory during stor-

age of sequences of pulsed signals by means of these systems and also

to discuss problems of practical realization of pulsed signal storage

devices.

5



The book was fundamentally revised during preparation of the

second edition, which mainly had two purposes.

The first purpose was to increase the theoretical level and to

utilize more complex mathematical apparatus of the probability ratio,
bell functions and the theory of recurrent events. This made it possi-

ble to outline more strictly the problem of optimum detection of various

signals: precisely known, with random initial phase and with random1iotlpeant resultsdon the efi inyo anaulge anw diinstalg puls d ina
iiotat phals an amtue, tofiindyo anotin anew diiteruestingal

storage devices. In increasing the theoretical level of the book, we

attempted to preserve the accessibility of the outline in brevity and

compressiveness determined by the limited volume of the book.

The second purpose of revising the book was to amplify its applied

direction. The structure of the book was changed, several new chapters,

paragraphs and sections of an applied nature were written, the number

of examples and figures was increased and so on for this purpose.

Chapters 7, 8, 9, 11 and 12 were rewritten during the revision and
Chapters 1, 2, 3 and 5 were completely revised. The remaining chapters

were supplemented with new materials.

Main attention is turned toward the physical aspect of the out-

lined processes with regard to the fact that the book is intendee for

a wide range of readers. The mathematical apparatus used was therefore
selected as simply as possible. This made it possible to avoid to a
significant degree duplication of the material contained in other books

mentioned above.

Despite the considerable simplification of the mathematical appar-

atus employed in the book, familiarity with the main concepts of proba-

bility theory and.the theory of random processes is required of the

reader (for example, Chapters 2, 3, 4 and 8 of B. R. Levin's book (20]

of Chapters 1, 2, 3, 6 and 7 of V. I. Tikhonov's book [15]). The book

has been illustrated with a large number of figures, on which are shownI the block-diagrams of the considered devices and the time diagrams of
voltages at their different points to facilitate understanding.

6
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I PART ONE

OPTIMUM FILTERS



CHAPTER 11

PROPERTIES OF OPTIMUM FILTERS

1.1. Characteristic Features and Problems of Radar Reception. Nature
of Considered Noise

The shape of the received signal reflected from a point object

coincides with the shape of the transmitted signal and is therefore

previously known in active radar. Information about the object that

caused reflection of the transmitted signal is primarily included in

the delay time of the received signal with respect to the transmitted

signal and also in the frequency bias of the received signal with re-

spect to the transmitted frequency.

However, the fact itself of a reflected signal in the received

oscillation is previously unknown. The latter can be represented as

both random noise and a mixture of this noise with the reflected signal.

The first problem of radar reception also includes determination of

the presence of a reflected signal in the received oscillation. This

problem is called the detection problem.

The other problem of radar reception is measurement of the param-

eters of a reflected signal distorted by random noise. These param-

eters are most frequently the delay time and Doppler frequency shift.



The problem of signal resolution, i.e., the problem of separate

detection of several simultaneous reflected signals with parameters*

that hardly differ and analysis of the parameters of these signals1 is

also very important to radar.

Main attention is subsequently devoted to consideration of devices

to solve the first problem, i.e., signal detection devices on a random 12

noise background. However, the results obtained in this case are ap-.4 plicable both in measurement of parameters and in signal resolution.

In this case only noise of the normal fluctuating type is studied.

This is explained by at least two factors.

First, fluctuating noise is the main type of noise in the range

of ultrashort waves used for radar. Actually, as is known, the level

of atmospheric pulsed noise in the indicated band is insignificant and

one can essentially avoid the pulsed noise of industrial origin by in-

stalling a radar system at a sufficient distance from the source of

this noise, which is always possible in the case of detection (especial-

ly of long-range) systems. Mutual interference (i.e., noise from other

radio engineering systems) can be reduced considerably by separating

the systems in frequency and space.

Second, and this is very important, the fluctuating noise that is

interference of a purely random nature is a very harmful type of inter-

ference [211. Because of its random nature, it is essentially impossi-

ble to completely eliminate it since there always exists the finite

* . probability that noise causes such a distortion of the received signal

that the oscillation formed as a result of this will coincide with a

completely different signal. In this case the detection error will be

inevitable.

Thus, the probability of error (distortion) only to some specific

level, which cannot be overcome by any means whatever, can be reducedI by improving the receivers. The latter was also strictly proved by
VA. Kotel'nikov, who developed the theory of potential noise stabil-

iy[22].
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When considering the effect of normally fluctuating noise, there

is the possibility of applying the comparatively well-developed appar-

atus of probability theory and the theory of random processes, which

permits one to simplify this consideration and to obtain a number of

quantitative results.

1.2. The Cross-Correlation Device--the Most Important Part of Optimum
Signal Detectors, Signal Identification and Measurement of
Parameters

1. Detection of Precisely Known Signal

The received oscillation ul(t)* is either noise nl(t) or the sum

of the signal vl(t) and noise nl(t). In the general case one can write

ul (i)=xv, (t) + n,(t).

where the parameter x = 1 in the presence of a signal and x = 0 in its

absence.

The signal vl(t), probability distribution of parameter P(x) andfprobability distribution of noise P(nl) are assumed to be known. Un-
known is only the fact of whether there is a signal in the received

oscillation, i.e., the value of parameter x. The receiver should pro-

vide an answer on the value of this parameter on the basis of analysis

of the received oscillation during the observation interval t = 0-T.

No receiver can determine the value of x with absolute accuracy

and with total confidence due to the distorting effect of noise and the

finite nature of analysis time--there will always be the finite proba-

bility of an erroneous decision.
I

Therefore, the most important thing that can be required of a re-

ceiver is to determine the probability of one or another value of x

with given realization of the received oscillation ul(t). In other

The subscript 1 denotes that the voltages at the receiver input are
considered (the receiver is denoted by point 1 and the output of its
linear part is denoted by point 2).

10



words, an optimum receiver based on analysis of the received oscillation

should calculate the a posteriori (post experimental) probability dis-
tribution Pu1 (x) for all possible values (two in the considered case)
of parameter x with given received oscillation ul(t) [13, 16, 22].

A posteriori distribution of Pul(x) is the distribution of x pro-
vided that realization ul is received. Since the unconditional proba-

bility of the appearances of events x and ul(t) is
PIxI, a) = P Wx P. (9h) = P (U.) P, Wx,

where P(u1 ) is the probability that realization ul(t) will appear and
Px(ul) is the conditional probability that this realization will appear

at given value of x, then the a posteriori probability is

P, (X) = ( IP -(US). (..l

The conditional probability Px(Ul) is the probability that the model of

noise nl(t) = ul(t) - xvl(t) will appear, i.e.,

P.(U.) =P n ,(t) a1 t) - X, ().

According to (1.2.1), the probability that the received oscilla-
tion contains a signal (x = 1) comprises

P p(1) P in, (t) = h (0 ,(,

and the probability that there is no signal (x = 0) in the received
oscillation,

The ratio of these probabilities

r =  "N -  
(1.2.2)

is the product of the ratio of a priori probabilities of signal and

noise reception and the ratio of probabilties that the received oscil-
lation contains a signal and that this oscillation is only noise.

Unfortunately, a priori probabilities of radar signal reception

and its absence in the received oscillation are usually unknown.



Therefore, the value of (1.2.2) is judged only by the value of the

so-called probability ratio

A ( ) = P n, (t)u= , (t)- , (1 ( 2.3)P I,(t)=u, ( (1..'3

that shows the extent to which the statement of signal reception is

more probable than the alternative statement of its absence. 15

If the received noise is white normal noise and has spectral in-

tensity (energy spectrum)

F, (a) -2a. (1.2.4)

then the probability of noise model nl(t) having length t and band AF

comprises [8, 10]

0

In this case, according to (1.2.3),

t.t
~ (t13d1/UP -u~() X(1.2.5)

- Xd* Ex -. +-L u (t) v, (t) dt],

where E,-Jy)dt. is the signal energy.

It is interesting to note that the probability ratio (1.2.5) is

independent of the width of the noise bandpass. Therefore, it is also
valid for the case of white normal noise which is formed as a result of

passage to the limit AF.

Since the signal is fully known in the considered case, the

probability ratio (1.2.5) is dependent only on the value of the

The value of a is the spectral intensity (i.e., the power for the
spectral interval of 1 Hz) of noise if one takes into account both pos-
itive and negative frequencies. Since only positive frequencies are
subsequently considered according to physical concepts, the spectral
noise intensity is assumed equal to 2a Ell, 20).

12



integral u1(t)v,(t)dt . The latter is a partial value (at T = 0) of

the cross-correlation function of the received oscillation ul(t) and of 1'

the anticipated signal vl(t) [6, 20]:

R.() = u, it) v, (t - ) d, (1.2.6)

and is calculated by a cross-correlation device (VKU; Vzaimno korrelya-
• . tsionnoye ustroystvo).

Thus, an optimum detector should calculate the a posteriori proba-

bility distribution of parameter x with given model of the received
oscillation or the ratio of these a posteriori probabilities (1.2.3).

Calculation of the latter reduces to calculation of the probability
ratio (1.2.5), which is carried out with the cross-correlation device.
Consequently, the cross-correlation device is the main component of an

optimum detector.

( 1) (4) Pewemee

NO~IEAt~ (2) (3) 14 afl~mWu1111 ....-.... .... .. . ' ... ..... ... .;AV

Fig. 1. Block diagram of optimum receiver to
detect precisely known signal.
Key: (1) received oscillation; (2) cross-corre-
lation device; (3) resolving circuit; (4) deci-
sion on presence or absence of signal.

Its output voltage may coincide with accuracy to the constant
multiplier and constant term both with probability ratio A(uI) and with

any monotonic (for example, logarithmic) function of this ratio. In

this case

u2- JhnA(u,) +bL

where k and b are arbitrary constants.

Selecting k - a and b - El/2a, we find according to (1.2.5)

t= us (0 v, (1 dt -- R3 (0)

L 13



As already indicated, a detector is designed to analyze the re-

ceived oscillation to determine whether this oscillation consists only

of noise (and there is *no signal in this case) or whether it is a mix-

ture of signal and noise. Consequently, this detector is a resolving

device.

Besides a purely resolving (logic) circuit, which is essentially

a nonlinear device, an optimum detector should contain, as indicated

* above, a cross-correlation device (Figure 1.2.1). The resolving cir-

cuit is most simply made in the form of a threshold device (minimum

limiter) which generates a voltage at the output that indicates whether

a decision is made on signal reception only if the voltage at its input

exceeds some level U0, called threshold voltage (Figure 1.2.2). The

presence of voltage at the output of the threshold device indicates

signal reception and its absence indicates reception of noise alone.

Thus, if the voltage of the input of the threshold device u2* exceeds

* the threshold U0:

U2> U&

* then a decision is made on the presence of a signal and in the opposite
case

ut< UO

* a decision is made on its absence.

U2

Fig. 1.2.2. Characteristics of thres-
hold device.

Here and further the subscripts coincide on the corresponding figure
to the number of the point to which the considered physical value is
related (in the given case U2 is voltage at point 2 of the block dia-
gram shown in Figure 1.2.1).

14



Voltage is fed from the output of the threshold device to the
information receiver, which may be a digital computer or computing

system. If the information receiver is an operator observing reflected
signals on a radar screen, the cathode-ray tube of this screen, which is
reproduces only those voltages on the screen which exceed the cut-off
voltage according to its value, due to the nonlinearity of its charac-{ teristic, is used as the threshold device.4 'Twootypes of errors may be observed in operation of the detector.

An error of first kind includes the fact that the voltage at the
input of the threshold device (i.e., at the output of the linear fil-
ter) exceeds the threshold voltage when noise alone is received, due
to which an xnzorrect decision is made about signal reception. This
error is called a false alarm or false detection.

An errs"v .-f second kind consists in loss of a signal due to the

fact thaet a voltage whose value is less than threshold voltage is
formed at the output of the linear filter due to interaction of signal
and no.:'.se, which is the basis for an erroneous conclusion about recep-
tion of noise alone (i.e., about the absence of a signal). It is

called signal loss.

The foregoing is illustrated by Figure l.2.3,* in which the time
diagrams of the signal, noise and signal-noise mixture are shown at
the input of the threshold device. The response voltage of the thresh-
old device is also shown in Figure 1.2.3, c. It is obvious from con-F sideration of these time diagrams that correct detection of a signal is
observed at moment t1 (i.e., the receiver generates a correct decisionI. on signal reception), the false alarm phenomenon occurs at moment t2
and signal loss occurs at moment t3.

wihSince both errors are caused by the effect of fluctuating noise,
wihis a random process subject only to statistical (probability)

Figure 1.2.3 is drawn for the case when an optimum filter is used as
the cross-correlation device in an optimum detector (Figure 1.2.1)
(see section 1.3).



laws, the problem of radar signal detection is statistical and can be

solved only by using methods of probability theory or the theory of

random processes.

19

AAA

C)

Fig. 1.2.3. Time diagrams of signal (a),
noise (b) and signal-noise mixture (c).

Let us determine the error probability of radar reception.

The probability of a false alarm F is equal to the probability

that the noise oscillation at the output of the VKU exceeds the thresh-

old voltage:

F=Bep(n., L'.0)= 7(':,) dr,,U.

where W(n2) is the probability distribution density of output noise.

Since

n,= n()v()dt=NiM f~

and each term of this sum is distributed by normal law (input noise 20

nl(t) is a normal random process), then output noise n2 also has normal

16



distribution. Its mean value is
r

m, (n) m, [., (t) v, (t) dt = 0,

since m1I nI (t)] = 0. The variation of this noise is

m2 =n,) - [M, (n)j2= im, (n - m, [r,() X

X v, (t) d n,(x) v, (x) dx]= v (t) dt

0 T T(1.2.7)

Xm [n, (t) n,(x)I ;,(x) dx= I,(t) dt R. (t- x) v, (x) dx,

where Ra(t) is the autocorrelation function of input noise.

Since input noise is considered white noise having spectral in-

tensity (1.2.4), then its autocorrelation function is

a(r) =ab(o),

where 6(T) is a delta-function or single pulse.

Substituting this function into (1.2.7) and using the filter de-

vice of the delta-function [23], we find

rS=a o o(I) d = aB,. (1.2.8e)

Consequently, the probability density of the output noise is

i( W(n'o- =, exp -- ,
Y~iwE, a

and the probability of a false alarm is

---- I exp F-- j d. T I- (1)1.
y.___ (1.2.9)

tion 1.201; 21
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is the relative response threshold.

Considering the dependence of the probability of a false alarm on

the relative threshold (Figure 1.2.4), we arrive at the obvious conclu-
sion that the threshold voltage must be increased compared to the effec-
tive (mean square) value of noise at the VKU output to reduce the prob-

ability of a false alarm.

0.5

-7 -, 0 2 7 L

Fig. 1.2.4. Probability of false alarm
as function of relative threshold.

Since the voltage of the signal-noise mixture at the VKU output has

the mean value

m (u,0) = m, (n., ,) = m , [n, (t) + v, (t)] v, (t) dt =

r

v 2 (t) dt = E,

and variation s2 = m, [(n, + v,)j - [m, (n, + va)' = aR,, then the probabilityI

density of the output voltage of the signal-noise mixture is

&= - - ]

and the probability of signal loss is 22
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where

is the output signal/noise ratio for power.

The dependence of signal loss probability on the difference of the

signal/noise ratio and the relative threshold completely coincides with

the dependence of the probability of a false alarm on the relative

threshold (Figure 1.2.4).

We are usually concerned in practice with the probability of cor-

rect detection D rather than with the signal loss probability.

'.0

-2 -, 0 2

Fig. 1.2.5. Characteristics of detecting a pre-
cisely known signal.

Obviously,

It follows from consideration of the dependence of the probability

of correct signal detection on the signal/noise ratio at different

values of relative threshold (Figure 1.2.5), which is called the de-

tection characteristic, that the signal/noise ratio must be increased 23
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universally compared to relative threshold to increase the probability

of correct detection.

It is easy to see from (1.2.9) and (1.2.10) that the relative

* threshold affects both the probability of a false alarm and the proba-

bility of signal loss. However, if the relative threshold must be in-

creased to reduce the probability of an error of first kind, its value

must on the contrary be decreased to reduce the probability of signal

'I loss. Therefore, it would seem that the value of this threshold should
be selected from compromise concepts to achieve minimum total probabil-

ity of error. However, this approach, called the ideal observer cri-

terion [11, 17], is most typical for communications systems (24] in

which both false detection and signal loss are undesirable to the same

degree.

A different approach, called the Neiman-Pearson criterion (10, 11,

* 17], is more correct in the case of radar detection systems. The fact

is that false detection of a radar signal is an exceptionally dangerous

phenomenon since it can cause very undesirable consequences and there-

fore the probability of this event should be very low (on the order of
10-6 to 10-10). An increase of this value cannot be permitted even by

reducing the probability of signal loss.

If the Neiman-Pearson criterion is used, the probability of a

false alarm F is previously fixed. Since it is functionally related to

the relative threshold (see (1.2.9) and Fig. 1.2.5], then the latter is

also previously given. The problem of a designer of the receiver of a

radar detection system reduces to development of devices that permit

one to reduce the signal loss probability and consequently to increase

the probability of correct detection of the signal.

It follows from (1.2.12) that since the relative threshold is

given by the level of the probability of the false alarm, then the only

possibility to increase the probability of correct detection is a uni-

versal increase of the signal/noise ratio at the input of the threshold 24

device. if it is preceded by the VKU (Fig. 1.2.1), then this ratio,

according to (1.2.11), is equal to the ratio of signal energy to half

the spectral intensity of noise. If the probability of a false alarm

20 -



and the spectral intensity of noise are .given, then the probability of

a false alarm can be increased only by increasing the signal energy.

With given signal energy, its shape does not affect the probabil-
ty of correct detection and therefore is insignificant from the view-

point of solving the detection problem and should be selected from en-

gineering concepts or of achieving high quality characteristics w~hen

measuring the signal parameters.

2. Detection of a Signal with Random Parameters

The signal received by the receiver is usually not known precisely.

Its amplitude, initial phase, delay time and other parameters are usu-
ally previously unknown. Two methods of receiving signals with unknown

parameters are possible. The first method includes preliminary conver-

sion of this signal to a totally known signal by measuring (analyzing)

all its unknown parameters and subsequent reception of it as a comn-

pletely known signal. This method requires special time to make the

measurements indicated above, complication of the receiver and in-

creased signal/noise ratio. Therefore, it is usually not employed but

is replaced with another method in which the unknown parameters of the

signal are assumed random and it is received while disregarding their

specific values by statistical averaging of the received oscillation

for all possible values of these random parameters. In this case the

received oscillation is

where al, a2, ... are random unmeasured signal parameters. Let us fix

*their values. The considered signal then becomes precisely known. Ac- 25

cording to (1.2.3), the probability ratio for this case

is a function of these fixed parameters. Carrying out statistical

averaging of this conditional probability ratio for all possible values

of random parameters with regard to the distribution of these values

W(01, (2 ,.) we find the unconditional probability ratio
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P n, (1) -a, (t)] ( 1.2.13 )
0 I

X dada,...

Let us consider as a first example detection of the signal
V1(t, 9)=Vj(t)cos(Wt+P) with random uniformly distributed phase W()=--..
Having substituted the expression for the signal into (1.2.5), we find
after elementary transformations

In A (,,, ) -Cs'

where

. z,., , ( V, (t) jcos 001dt

and

arctg -i-"

Then according to (1.2.13) we will have

o (1.2.15)

=eh I

since 26

U exp [-a cOs (v+ +-)] d? = 2%I* (a),

where I0 (a) is a zero-order modified Bessel function. Since this func-

tion is monotonic [25], the optimum detector of the considered signal

should calculate the value Z2 - z2 + z2 and according to (1.2.14), zl
1 2

and z2 are the voltages at the output of 2 VKU controlled by two fre-

quency w0 and amplitude Vl(t) oscillations shifted by w/2.

Consequently, an optimum receiver for a signal with random initial

phase consists of two VKU controlled by quadrature oscillations, two
square-law function generators (squaring devices), an adder and thresh-
old device (Fig. 1.2.6).
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Fig. 1.2.6. Block diagram of optimum
receiver for signal with random phase.

Let us then determine the structure of an optimum receiver for a
signal with random unmeasurable amplitude and initial phase. Let us
find for this purpose the probability ratio for the signal, assuming
that its relative amplitude A is distributed by Raleigh law

IW(A) =2A exp(-A 2 ) I (A),

where I(x)=1 at x>O , and the initial phase is distributed according 27(x)-= 0 at 'x - 01
to uniform law. Then

I (A, p) = exp (-A) 1 (A).

Moreover,

ul (t) +(t +xA V, (t) cos (w +,q).

Substituting this expression into (1.2.5) and repeating the calcula-
tions made during consideration of the previous example, we find

InA(u, A. 4)=- '--+ AZ cm( +

where Z and * are the same as previously. Having carried out statis-
tical averaging of the conditional probability ratio A(ul, A, f), first
with respect to 0 and then with respect to A, we will have

A (sh) 20 Cp (1.2.16)

Thus, the optimum receiver for a signal with random amplitude and
initial phase should calculate, as in the case of a signal with random

initial phase, the value of Z2 . Therefore, the block diagram of the
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receiver shown in Fig. 1.2.6 is also optimum for a signal with random

amplitude arid initial phase.

3. Detection of Some Other Signals. Signal Identification and Measure-
ment of Their Parameters

Since the purpose of the given book is not to outline the theory

of optimum radio receiving methods, which has been quite fully and suc-'I cessfully outlined in other monographs (10-19), let us limit ourselves
to enumeration (see, for example, [13] for proof) of some signals whose

* optimum detectors contain VKU as one of the basic components.*1 Thus, a VKU is used as the main part of optimum detectors for the

following signals (to supplement the foregoing):

1) coherent pulsed sequences: a) precisely known, b) with ran-

dom initial phase and c) with random amplitude and initial phase;

2) noncoherent pulse sequences: a) with random initial phases, 28
b) with random initial phases and amplitudes fluctuating in unison and

c) with random initial phases and independently fluctuating amplitudes;

3) with random amplitude;

4) of a weak precisely known signal with phase detection;

5) with many possible values of parameters and so on.

VKU are widely used not only in optimum detectors, as noted above,

but also in optimum signal identific tion detectors and receivers for

measuring their parameters.

As examples let us point out that VKU are the movst important com-

ponents of optimum receivers designed to perform the following tasks

(131:

1) identification of two signals;

2) identification of m orthogonal signals;
24



3) identification of signals with many possible values of

parameters;

4) measurement of signal amplitude;

5) measurement of signal delay time, i.e., range to the target;

6) measurement of signal frequency and consequently of the radial
velocity of the target and so on.

Thus, a VKU is the main part of optimum receivers designed to

solve the most diverse problems.

Therefore, the problem of realizing a VKU is very important,
especially in practice, which is also considered below.

1.3. Realization of Cross-Correlation Device in the Form of an Optimum

Filter. Pulse Characteristics of Optimum Filter

By definition, a VKU is a device for calculation of the function

R. (w) A 3 i (x), (x - -) dx,

that establishes the degree of cross-correlation (relationship) of the 29

functions fl(x) and f2(x - T).

With optimum reception of a precisely known signal, the received

oscillation ul(t) performs the role of the first function and the
emitted signal vl(t) and consequently the signal anticipated upon re-

ception, performs the second function. In this case

Ri)v U.(x)u(z--)dx. (1.3.1)

which differs from (1.2.6) only by integration limits.

A computing system (Fig. 1.3.1), consisting of a delay device for
time T, multiplier device and integrating device, can calculate this

function. This device calculates only one value of the
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Fig. 1.3.1. Block diagram of cross-
correlation device.

cross-correlation function each time, corresponding to the specific de-

lay time T. To investigate the entire course of the cross-correlation

function of the signal and input oscillation, one must calculate many

values of this function corresponding to different delays T. And this

first of all requires multiple repetition of the input voltage and sec-

ond considerably longer analysis time.

Another solution of this problem is to use a multichannel system

in the form of parallel connection of a large number of computing sys-

* tems with different delay times T. The structure of the entire device
thus naturally becomes very cumbersome and complicated for analyzing

the cross-correlation function.

If the signal arrival time is previously known, then it is no

longer necessary to calculate the entire cross-correlation function but

it is sufficient to determine its value at T = 0. However, this case 30

is usually not observed in practice. Thus, for example, the signal

arrival time in any rangefinders carries information about the range

to the target and is therefore not previously known.

Being a linear system with variable parameters (26], the comput-

ing cross-correlation device has no invariance with respect to arrival

time (see section 1.6) and therefore should be multichannel with un-

known signal arrival time.

In this regard let us consider a capability, very important to

practice, of realizing a cross-correlation device in the form of a

simpler single-channel linear device with constant parameters that

generates the function R9 ('r) continuously at its own output during the

time that the input signal time delay only introduces the corresponding

delay to the signal at the output of this device.
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Formula (1.3.1) for the cross-correlation function has the nature

of a convolution which establishes contact between the voltages at the

input and output of the linear system (a linear filter). Actually, the

voltage at the output of the linear filter is described by the convolu-

convolution

u, () - ,x) h(t-x)dx. (1.3.2)

where h(t) is the pulse characteristic of the filter, i.e., its re-

sponse to a single pulse S(t).

Since h(t) = 0 at t < 0 in physically realized filters, then

h(t - x) = 0 at x > t, due to which (1.3.2) can be represented in the

form:

u, (t)= u, (x) h (t- x) dx. (1.3.3)

Let us select a linear system such that the voltage at its output

produces the following cross-correlation function with accuracy to ar-

bitrary multiplier C and with some time delay to:

u,(t) -C8.(--R.. (1.3.4)

It follows from (1.3.3) and (1.3.1) that this equality is equivalent to 31

the following:

S .1 (x) h(t -x) dx=C . (x) v, (x- t + Q d.

for fulfillment of which it is sufficient that

h() - C a (4).(1.3.5)

A linear system having such a pulse characteristic is called an

optimum filter since it fulfills according to (1.3.3) the most impor-

tant operation of optimum reception--calculation of the cross-correla-

tion function. As will be shown below, an optimum filter (OF; Opti-

mal'nyy fil'tr) is the best even in the sense of producing at its out-

put the maximum possible signal/noise ratio with given signal shape and

white noise intensity at its input.
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Optimum detection filters should be distinguished from filters

optimum in the sense of the mean square error criterion. These filters,

unlike those considered, are used to reproduce a signal in the presence

of random noise and are used extensively in automatic regulation and

control systems [18, 29]. The latter are also contained in radar coun-

ters of moving target parameters [14].

In the case of radio signals, expression (1.3.5) can be repre-

sented in the following complex form:

IrIr'CVv e14 (1.3.6)
4 where fl(t) is the complex amplitude of the pulse characteristic; r~1 (t)

is the complex signal amplitude; and wois the signal carrier frequency,

while the asterisk denotes a complex conjugate function, i.e., a func-
tion with opposite sign of the imaginary part.

One can ascertain the equivalents of formulas (1.3.5) and (1.3.6)

in the following manner. If both sides of equality (1.3.6) are multi-
plied by ej'ot and if one converts in them from complex to real values,

then we find (1.3.5).

It follows from (1.3.5) that the pulse characteristic of a filter 32

optimum to signal vl(t) differs from the function that describes this

signal only by constant multiplier C with a time shift to value to and
with sign of the independent variable of time t. To emphasize the lat-

ter it is said that the pulse characteristic of the OF is a mirror im-

age of the function that describes the instantaneous values of the

signal.

One of the signals (a), its mirror image (b) and one of the pos-

sible pulse characteristics of the realized optimum filter (c) are
shown in Fig. 1.3.2. In this case C - 2 and to - tk are selected, where

tk is the moment of time that the signal ends at the input.

The need for time delay to, whose value should not be less thanI the moment of time of the end of the input signal

(1.3.7)
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Us

u(t)

4) t-t,

Fig. 1.3.2. Time diagrams of signal (a),
of its mirror image (b) and of pulse char-
acteristic of OF (c).

can be easily seen from this figure. If the latter condition were not

observed, then the OF would generate voltage h(t) at its output even

before the single pulse S(t) was fed to its input at moment t = 0. It

is clear that this filter cannot be realized.

It is feasible to select to = tk to avoid excess signal delay at

the output and to simplify the structure of the OF.

to to tots 9 to C

Fig. 1.3.3. Symmetrical signal.

For signals whose shape is symmetrical with respect to the mean 3

position (Fig. 1.3.3), the following relation is valid

v (t2 ) =v 1 (ti), (1.3.8)

where moments of time tI and t2 are related by the function

and tH is the moment of time of the beginning of the signal.
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It follows from the latter equality that:

t2=t,-, - Ii.

due to which expression (1.3.8) assumes the form

Since it is valid for iny moment of time tl, subscript 1 can be omitted:

V1 (t ,V1 (tBl + tx-t ).

As a result of the latter relation and (1.3.5), a filter optimum

to a symmetrical signal has the pulse characteristic

h (t) = Cv,(t +t, ,-to).

Hence we conclude that the pulse characteristic of a filter optimum to

a symmetrical signal differs from the function that describes the sig-
nal only by the constant coefficient C and the time shift by value tc =

tH + tK - t'

If the signal delay of the output of this filter is selected as

the minimum possible to = tK, then the value of the indicated shift
will be equal to the moment of the beginning of the signal tH and the

pulse characteristic will assume the form

I h(t),-Cv,(t+tw)- (1. 3.9 )

Specifically, at t. = 0

h(t)-Cv,(t). (1.3.10)

i.e., the pulse characteristic of a filter optimum to the signal, which

is symmetrical with respect to the mean position and begins at moment

of time t - 0, reproduces the shape of this signal on scale C.

Let us note in conclusion that optimum filters are also usually

employed as cross-correlation devices in radar systems. However, in 34

those cases when the signals have very complex shape or extremely long

duration (on the order of seconds), it practically becomes impossible
to build optimum filters, whereas realization of a computing
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cross-correlation device in the form of a digital correlator presents

n6 special difficulties.

1.4. Signal Storage in an Optimum Filter

It follows from (1.3.5) and (1.3.1) that:

u, (t) = C u, (x) v, (x - + tjdx.

If the voltage of a signal optimum to the filter is fed to its in-

put, i.e., if ul(t) = vl(t), then the following voltage will occur at

its output

c o (x) v, x-t+tj dx=CR (-t, -(1.Q4.2)

where

S(,) S 0 , (t) v, (t - dt . t) , ( ) dt (1.4.3)

is the autocorrelation function of the signal vl(t).

Accordingly, this filter is an autocorrelation device with respect

to a signal optimum to the given filter.

Due to the evenness of the autocorrelation function, the output

signal voltage (1.4.2) is an even time function with respect to moment

to . Therefore, if the beginning of counting time is converted to this

moment, the output signal spectrum will consist of only cosine waves.

It is well known that autocorrelation function Ra(T) is maximum at
i = 0. Therefore, the voltage at the output of an optimum filter

reaches a maximum value at moment t - to. This maximum (peak) in

value of the output signal has the value

V,(t)=CR(0)=C vdt = CE,. (1.4.4)

Thus, the peak value of signal voltage at the output of an optimum fil- 35

ter is proportional to the total signal energy at the input.
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The signal voltage is processed by an optimum filter by time to,
which cannot be earlier than the moment the signal ends at the input

due to (1.3.7), so as to store all components of this signal and by

adding them to form a peak signal pip at the output.

Thus, the operating mechanism of an optimum filter includes signal

* storage (in the broad sense).* Therefore, an optimum filter can bet called an ideal storage device. It must be constructed so that signal
storage is best.

For this purpose the pulse characteristic of the optimum filter

should have the shape of a signal due to which this filter acquires theI capability of analyzing the degree of proximity of the input oscilla-

tion and of the anticipated signal. This is accomplished by multiply-

ing the instantaneous value of the input oscillation by the shape of

* the signal and subsequent integration [see (1.4.1)]. In the case of

reception of the anticipated signal, the result of this analysis will

be very significant since the signal is stored in the best manner.

This also ensures the maximum possible probability of its detection.

Specifically, if the signal is a square-wave video pulse:

:'(t)=V at O<t<.

a M =0 at 1<0 and .t>r.

then it follows from (1.4:1) at to =T that the output voltage

U,()=C uMt 1..5

is an integral, increased VC times, of the input voltage in the range
of duration T preceding the given momey)t, of time t. Consequently, the

optimum filter integrates the input voltage during the signal length 36

and produces the result of this integration continuously at its own
output.

Unlike adding the input voltage samples (for example, separated bya

time interval multiple to the repetition rate), which is also called

storage.
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If the signal has a more complex shape, then a filter optimum to

it will produce the weight integration of the input oscillation during

the duration of the signal and the weight function is the function that

describes the signal, i.e.,.determined by its shape.

Let, for example, a signal have triangular shape:

v,(t)=t at 0<< }
o0( ) 0 at t<O and t>C.

Then, having assumed that to = T, we find according to (1.4.1)

u, (t)= [x- (t - )] u,(x) dx.
1-i

The weight function of integration

f(x, t)=x-(t--%) at t-s <x<t, )
fix. )=O at X<t-s and x>t

also has the form of a triangle (Fig. 1.4.1). Consequently, the values

of the received oscillation ul(x) with this input signal should be

multiplied by the corresponding values of the weight function whose

value is greater at x < t, the closer moment of time x is to moment t

and the product of these functions should be integrated in the range of

duration T ended at the considered moment of time t.

c z

Fig. 1.4.1. Weight function of
input voltage integration with
triangular signal.

Let us note that there is no better procedure for processing a

signal-noise mixture than signal storage when receiving a signal ofIknown shape on a background of random fluctuating noise.

33
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Actually, it is impossible to use the second method of separating 37

signal from noise--interference compensation--in the given case since

the interference is a random oscillation with previously unknown shape.

Therefore, it is essentially impossible to construct a device to com-

pensate for interference.

1.5. Spectral Characteristics of the Optimum Filter

It is easy to determine the transfer function R(), which is the

ratio of complex amplitudes of harmonic frequency oscillations w at the

output and input of this filter, from the known pulse characteristic of

the optimum filter. As is known (9],

S(ca)'= ! h (t) e-I' dt.

Having substituted (1.3.5) into this expression, we find

E (w)= C (, ( --t) e-'t =Ce-'' .V, (') eodx.

Comparing the derived integral to the expression for spectral density

of the signal

.7, (11 M ,'t e-J=' dt,

we conclude that they are complex conjugate functions, due to which

S(1. 5.1)

Thus, the transfer function of an optimum filter differs from

function S*(w), complex conjugate to the signal spectrum 9(w) only by

a multiplier of form Ce-jwt, where C and to are constants as was es-

tablished in section 1.4 and to is the moment of time at which the

maximum instantaneous value (i.e., the peak value) of the signal is 38

observed [30,31].

The complex equality (1.5.1) is equivalent to the two real

equalities:

34
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K- (0-C-

K( )=S'( )(1.5.2)

and

$(w)=--4qp((o) + ct. (1.5.3)

where K(M) is the amplitude-frecruency characteristic of the filter;

() is its phase characteristic; Sl(w) is the modulus of the spectral
density of the signal or its amplitude spectrum; and O(w) is the inde-

pendent variable (phase) of the spectral density of the signal or its

phase spectrum.

It follows from consideration of the first of these equalities

that the amplitude-frequency characteristic of an optimum filter is

distinguished only by multiplier C from the amplitude spectrum of the

signal to which this filter is optimum. Because of this, there is

relative attenuation of the spectral components of the signal and noise

corresponding to the less intensive sections of the signal spectrum.

This attenuation is greater, the less the intensity of the signal com-

ponents on these frequencies. The latter play a lesser role in forma-

tion of the peak value of the output signal than more intensive compon-

ents. Attenuation of the noise spectrum, uniform at the input, is

observed on all frequencies, with the exception only of those which

correspond to the maximum signal spectrum.

The foregoing concepts are illustrated by Fig. 1.5.1 for the case

of a square-wave video pulse. It is easy to note from consideration of

it that the amplitude spectrum of the output signal S2 (M) coincides in

shape with the energy spectrum of output noise F2 (w). This is con-

firmed by the following relations:

S .~S, (em) (a) MCSP (ae)

and

hence, it follows:

19(s) -CS ,(o), (1.5.4)
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i.e., the amplitude spectrum of the signal at the output of an optimum 39

filter differs from the energy spectrum of output :ioise only by the

multiplier.

Zb)

Fig. 1.5.1. Conversion of signal (a) and
white noise (b) spectrum in optimum filter.

Let us return to interpretation of equality (1.5.3). It means

that the phase characteristic of an optimum filter ip(w) differs only

by sign from the sum of the phase spectrum of the signal O(M) and the

linear frequency function wto (Fig. 1.5.2).

With regard to the fact that the phase characteristic of an opti-

mum filter satisfies equality (1.5.3), all the spectral components of

the signal at the output of this filter, being cosine curves, have the

same zero phase at moment t = to. Actually, the harmonic component of

the frequency signal w at the output of an optimum filter at moment t 40

has the complete phase

S (t) = t + Y (-) + ? (- = - + ? (") - () -

i
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which approaches zero at t = to regardless of the value of frequency.

Being added in phase, the spectral components of the signal also form

the highest peak horn of the signal at this moment.

II

Fig. 1.5.2. Plotting of phase char-
acteristic of optimum filter

Reversal of the phase of the spectral components of noise with an

optimum filter does not change their random nature, due to which the

result of adding these components will also be random at the output.

In this case the probability that the noise components will be added at

some moment of time in phase and form a very large noise horn is very

low as at the filter input.

With regard to the fact that the characteristics of an optimum f il-

ter are matched in the best manner to the signal characteristics (spe- 4

cifically to its spectral characteristics), an optimum filter is freq-

quently called a matched filter in the literature [5, 32].

Using the relations derived above, let us establish the relation-

ship between signal voltage and the autocorrelation function of noise

at the output of an optimum filter. It follows from (1.5.1) that the

signal at the output of an optimum filter has the spectral density

3, go) .' (c) K (Mi = CS, (a) e-101

and the instantaneous value

37



2 r.)S .)ewSd=- - S (,)co, (f-to) do,. (1.5.5)

Consequently, the output signal is dependent only on the amplitude

spectrum of the input signal and is independent of its phase signal.

This is explained by the fact that an optimum filter compensates for

phase shifts between the spectral components of the input signal.

Since output noise has energy spectrum (1.5.4), then its autocor-

* relation function is

RIM P(o) = - S-%) ct d.

Comparing this expression to (1.5.5), we find

R,(t-to) =aCv2 (t), (1.5.6)

i.e., the autocorrelation function of noise at the output of an opti-

mum filter differs from the output signal only by constant multiplier

aC and by the time shift by value to.

Specifically, assuming that t = to, we will have

". = R. (0) = aCV,(t,). (1.5.7)

Accordingly, the standard deviation of output noise is aC times greater
than the peak value of the output signal reached at t = to.

It follows from (1.5.7) and (1.4.4) that:

2 = (1.5.8)

1.6. Invariance of the Optimum Filter 42

It follows from (1.5.1) that a filter optimum to the signal v(t)

is optimum for all other signals of the same shape, i'e., those dif-

fering from signal v(t) only by amplitude, time position and initial

phase. Actually, if one signal differs from another only by the fact
that its amplitude is u times greater and it is arranged in time later
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by t1 , then as is known [44], the spectral density of this signal dif-

fers from the spectral density of the second signal only by the multi-

plier Ue-Jutl. Therefore, complete identity of the transfer functions

of filters optimum to these signals can be achieved in (1.5.1) by the

appropriate selection of constants C and to. This also proves the op-

timum nature of the filter for all signals of given shape

simultaneously.

This result can easily be found by the time method. Actually, let

the filter be optimum to some signal vl(t), due to which the pulse

characteristic of the filter meets condition (1.3.5). This same filter

is also optimum to signal vvl(t - tI) having the same shape and differ-

ing only by the fact that its amplitude is u times greater and it is

delayed by time tI compared to the first signal. The optimum nature of
this filter for this signal follows from the fact that its pulse char-
acteristic satisfies condition (1.3.5) for the second signal as well,

but only at values of constants C and to other than for the first

signal.

Accordingly, an optimum filter has the property of invariance with

respect to amplitude and time position.

With regard to the problem of the invariance of an optimum filter

with respect to the initial phase, then one should bear in mind the

following. If there is a filter optimum to some signal with specific

initial phase, the effect of a signal of the same shape but with dif-

ferent initial phase on it leads to variation of the output signal

phase by the value 8, equal to the difference of the initial phases of

the effective and optimum signal. This can easily be seen from the

expression [10]

U,(t)=}Ce - t%4 v,(x)r, (x-t+ttdx, (1.6.1)

that establishes the relationship between the complex amplitudes of 43

output voltage r2 (t), input voltage U 1 (t) and optimum signal voltage

V1(t) and which is a complex analog of the real integral (1.4.1). If

the input oscillation is varied in phase by angle e, then its complex
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amplitude will acquire an additional multiplier eje, which, being car-

ried out beyond the sign of the integral, indicates variation of the

phase of the output oscillation by the same angle. The value of the

amplitude of the output oscillation also remains the same:

U2 (t)M U(1)I=. C 3tt.d (1.6.2)

In this case the peak value of the output oscillation essentially does

not vary, but the moment of time this value is reached is shifted by

value e/w0 .

If the initial phase of the signal is varied by a random value,

* Pthen the time shift of the maximum output signal will also be random.
Therefore, the optimum receiver for a signal with random unmeasured

initial phase, except an optimum filter for a signal with some initial

phase, should contain a device that eliminates the dependence of the

output voltage on the random initial phase. This device can be an amp-
litude detector that retains information about the signal amplitude and

that eliminates information about its phase.

- i It is interesting to note that the modulus of voltage at the out-

put of an optimum filter at moment t = to differs only by multiplier

C from value Z, which should calculate the optimum detector for a sig-
nal with random initial phase (see item 2, section 1.2). Actually,

relations (1.2.14) can be represented in the following form:

,= Re T1,()r,()d

and

Z' SIim J(x) dx, 4

due to which

Z U z+z= s (x) 1I (x) dxj

Comparing this expression to 1.2.6) we find
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U,(t.) =Cz =.C Z

which also proves the previous statement.

Accordingly, an optimum receiver for a signal with random initial
phase can be constructed from a block-diagram differing from that pre-

viously considered (Fig. 1.2.6) with two quadrature channels and con-
sisting of a filter optimum to a signal with arbitrary initial phase,
amplitude detector and threshold device (Fig.1.6.1).

Fig. 1.6.1. Second block-diagram
of optimum receiver for signal with
random phase.
Key: (1) optimum filter; (2) ampl8-
tude detector; (3) threshold device

Thus, the combination of the filter optimum to a signal with ar-

bitrary initial phase and an amplitude detector is optimum for signals

of the same shape, but having any value of initial phase, i.e., invar-
iant with respect to the initial phase. The property of invariance of
an optimum filter is very important, especially for practice. Actual-

ly, the amplitude, delay and initial phase of the received signal are
not usually known. However, instead of building a large number of
filters, each of which would be optimum for a signal with specific
values of amplitude, delay and initial phase, it is sufficient to de-
sign only one filter which will be optimum for all signals of given 45
shape to accomplish optimum reception.

Such signal parameters as amplitude and initial phase frequently

assume random values in radar and carry no useful information, i.e.,
they are spurious. It follows from the foregoing that the presence of
these random parameters does not change the structure of an optimum

filter, but the presence of a random initial phase in the received sig-
nals leads to the need to use an amplitude detector (or two quadrature
channels) after the optimum filter.
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1.7. Signal/Noise Ratio at Output of Optimum Filter

According to (1.4.4) and (1.5.8), the ratio of the square of the
peak value of an output signal to the noise output comprises

q2  't _

This result completely coincides with (1.2.11) and means that the
ratio of the square of the peak value of the signal to the noise output
at the output of an optimum filter is equal to the signal energy at its
input, divided by half the spectral noise intensity at the input.

Thus, the signal/noise ratio at the output of an optimum filter is

dependent only on the signal energy at its input and is totally inde-

,pendent of its shape (see item, section 1.2).

Let us ascertain that an optimum filter, which was selected in

section 1.3 so that the voltage at its output reproduced the cross-
correlation function, provides the maximum possible signal/noise ratio
at its own output when a signal optimum to it and white noise are fed

to its input.

-When a signal vl(t) is fed to the input of a linear system with
pulse characteristic h(t), the voltage at its output, according to
(1.3.3), is

SV, Wt = , (x) h (I - x) dx.

The noise at the output of this system, caused by white noise with V

spectral intensity (1.2.4) being fed to the input, has the autocorrela-
tion function (20]

R -()=a (hi 7 +I)d)

,i"--- (1.7.1)4m# i~oput (variance)

R. (0) =a V(t) dt. (1.7.2)
-4
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Therefore, the ratio of the square of the peak signal value (at

moment t = to) to noise output at the output of a linear system

comprises

v, (x) h (to- x) dx

S 4) ( i I

* According to Bunyakovskiy's ihequality (33]

vS(x) h (t. x) ( v Ix) dx A' (t.-x) dx =

=Ef, h'(t) dt,

due to which

q.< -L - q2..

Bunyakovskiy's inequality and the latter equality following from it are

transformed to equalities provided that the integral functions differ

only by an arbitrary constant multiplier (for example, C):

CV, I W - h(O-X),

which is completely equivalent to (1.3.5). This also proves the most

important property of an optimum filter--an optimum filter permits one

to achieve the maximum possible ratio of the square of the peak signal

value to noise output at its own output with given signal shape and

noise level at the input and thus to achieve the maximum probability 47

of correct detection of this signal with given level of false alarm

probability [34].

1.8. Characteristics )f Optimum Filter When Input Noise is Correlated

The characteristics of an optimum filter were considered above

for the case of white gaussian noise at the input. Let us generalize

the results for the case of correlated noise.
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Thus, let the noise at the input have energy spectrum FI(w),

which is a function of frequency, i.e., Fl(w) # const. To determine

the characteristics of an optimum filter, let us use the method devel-

oped by V. A. Kotel'nikov [22] and that includes division of the opti-
mum filter ("ideal receiver" in V. A. Kotel'nikov's terminology) into

two linear components with transfer functions R1 (w) and K2 (w) (Fig.
1.8.1).

Fig. 1.8.1. Representation of
optimum filter in form of two
linear filters

Let us select the transfer function of the first component KI(W)

such that the noise at its output become white noise, i.e., its inten-

sity be identical at all frequencies (both positive and negative):

F2((a) -a-const.

Since F2( = Fl()K2(w), then to do this it is necessary that

If the signal at the input has spectral density S1 (M), it will be 48

as follows at the output of the first filter:

The transfer function of the second linear component K2(M) must

be selected according to (1.5.1) for optimum filtration of a mixture

of this signal and white noise, i.e.,

K, () = CS". (.) e-1 ',

where C and to are some constants.

The entire optimum filter, consisting of the two indicated linear

components, obviously has the transfer function
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Having used the three previous relations, let us rewrite the latter

equality in the following form:

K ( K.) ', (6) CS*, (w) K" , ('.) e -

CK , 
(.) S, (a) e-:.. aC ' ' ( e,) -i

if finally

S(a) C, e(.8.1)

where C1 = aC.

Accordingly, the transfer function of a filter optimum to a signal
which is mixed with noise whose intensity is dependent on frequency is
directly proportional to a function complex conjugate to the spectral
density of the signal and is inversely proportional to the energy spec-
trtum of the input noise [35].

Specifically, at Fl(w) = a, formula (1.8.1) is degenerate at
(1.5.1) if one assumes that C = Cl/a.

Let us determine the signal/noise ratio at the output of an opti-

mum filter in this case.

It follows from (1.8.1) that a signal at the output of this

filter has the spectrum

,R3 X1)--_ N f) K (-,)=C, e'

instantaneous value 4!

c, Sj .)e#,t-o
VU (t) -- e~(-0.. F, .)

and peak value

C5V, =v, (Q t d , , w

(a
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The noise at the filter output comprises

2 d.

Therefore, the ratio of the square of the peak signal to noise at the

filter output is

q - = r f F, (1.8.2)

If one assumes that Fl(M) = a in this formula, then we again find the

result (1.2.11), valid for the case of white noise.

Using (1.8.1), it is easy to show [7, 18] that the pulse charac-

teristic of an optimum filter satisfies the following integral equation:

i (%) R., (t - ) d. = C,v, (to-) (1.8.3)

where Ral(t) is the autocorrelation function of input noise and vl(t)

is the input signal voltage.

Specifically, if the noise is white noise, i.e., if Ral(r) -

= a6(t), then, using the filtering property of the delta-function and

assuming that Cl = aC, we again find (1.3.5) from (1.8.3).
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CHAPTER 2 50

OPTIMUM FILTERS FOR THE SIMPLEST PULSED SIGNALS

2.1. Design of Filters Optimum to Single Video Pulse Signal

1. Methods of Optimum Filter Design

The properties of optimum filters were considered in the previous

chapter. For practical purposes, it is very important not only to

know these properties but also to know how to design optimum filters

based on elementary radio engineering devices.

Two methods of designing optimum filters are possible--time and

spectral (frequency) [36]. The time method is based on the use of the

relationship between the pulse characteristic of &-i optimum filter and

the function that describes this signal. This relationship is estab-

lished in the general case by the relation (1.3.5) and in the special

case of a signal symmetrical with respect to its own mean position by

relation (1.3.10). In this case design of an optimum filter includes

construction of a linear system whose pulse characteristic reproduces

on some scale and with some delay the function which is a near image

of the signal, which coincides with this signal in the case of a sym-

metrical signal.

The use of the relationship between the transfer function of an

optimum filter and the signal spectrum is the basis of the second,
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spectral or frequency method of designing optimum filters. This rela-

tionship is described by equality (1.5.1).

The spectral method of designing optimum filters consists in build- 52

ing a linear system whose transfer function differs from that complex

conjugate to the signal spectrum only by a multiplier of type Ce -j)tO.

The latter method requires a knowledge of the signal spectrum in

the case when the signal is controlled by a time function rather than
spectrum and is therefore somewhat more complicated.

Optimum filters are designed below by both methods.

2. Building a Filter Optimum to a Square-Wave Video Pulse

A square-wave video pulse of amplitude V and length T (Fig. 2.1.1)

is described by the function

v(t)=V at-+<t<

Ou)=0 at II>+

Using the time method of design and taking into account that the

signal is symmetrical with respect to its own mean position, let us

select a linear system whose pulse characteristic would be a square-

wave video pulse of length T. In -ither words, a linear system must be

constructed which would generate a video pulse of indicated shape and

length at the output when a single pulsw acts on its input.

V

Fig. 2.1.1. Square-wave video pulse.

First, let us note that a single voltage jump l(t) is formed at

the output when a single pulse acts on the input of an integrating de-

%ice. A square-wave pulse of single amplitude and length T is the 52
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difference of unit jumps 1(t) and l(t - )shifted with respect to each

other by time T.

Fig. 2.1.2. Block diagram
of optimum filter for square-
wave video pulse.

Therefore, a linear system whose pulse characteristic is a square-
wave pulse of length T is a combination of the following three devices:

an integrating device, delay device by time T and a subtraction device
(Fig. 2.1.2). This system is also an optimum filter for the considered

pulse. The time diagrams of the voltages at the output of its individ-

ual components when a single pulse acts on the input are shown in Fig.
2.1.3.

V7 t

0 t

Fig. 2.1.3. Time diagrams of
voltages in optimum filter.

Let us construct an optimum filter by the spectral method. The

considered signal has the spectrum

S Ve2 _V e 2_=___2__io

A function complex conjugate to this spectrum has the form

Due to (1.5.1), an optimum filter has the transfer function
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A ,l Ce_; ,,Ve - -. jW

or, having assumed for simplification that C = 1/V and t o = T/2, 5

A (- = -- e (2.1.1)

Since the linear component with transfer function 1/jw is an inte-

grating device and since e-jWT describes the transfer function of the

delay device by time T, an optimum filter consists of an integrating

device, delay device by time T and subtraction device [37].

Accordingly, the same result was achieved by the spectral method

as by the time method.

3. Building a Filter Optimum to a Trapezoidal Video Pulse

A trapezoidal video pulse (Fig. 2.1.4, a) having amplitude V,

length r and length of plane part Ti can be represented in the form of

the algebraic sum of four voltages which, beginning at moments of time

equal to -(/2),-(T2/2), TI/2 and T/2, respectively, vary linearly with

law 2V/(T - Tl) and up to these moments of time are identically equal

to zero (Fig. 2.1.4, b). Therefore,

V(t) -oI(t) +oU(t) +U 3 W(t) +0t4(t) =

. -_v- /, - I (t+ - t ~ l , -
(2.1.2)

Since the signal is symmetrical with respect to its own mean position

and tH = -(T/2), then according to (1.3.10), the pulse characteristic

of a filter optimum to the signal should in the case of minimum delay 54

(memory) have the form

Having assumed for further simplification that C - (T - T1 )/2V, we

find

so



h (t t -t)- t---2---2--

(2.1.3)

It is easy to note that the pulse characteristic consists of four

terms of identical nature differing (except for sign) only by the time

delay. Therefore, any other term can be formed from the first term of

this function by the corresponding delay (and if necessary inversion

as well).

V

" 0 I r t

U \ t
i

Fig.2.1.4. Trapezoidal video pulse
(a) and its terms (b).

The first term of this function t'l(t) is formed as a result of 55

the action of a single pulse on two series-connected integrating de-

vices. Therefore, an optimum filter for a trapezoidal video pulse con-

sists of two-series-connected integrating devices, three time delay

devices equal to (r - Ti)/2, (T + TI)/2 and T, respectively, and an

adding device (Fig. 2.1.5, a).

Instead of the three indicated delay devices, it is feasible to

have only one of them with maximum time delay and two leads or three

delay devices with delay times equal to (T - T1 )/2, Ti and (T + -I)/2,

respectively (Fig. 2.1.5, b). The block diagram of an optimum filter

can be converted to an even simpler diagram (Fig. 2.1.5, ). Its 56
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simplicity includes the presence of only two delay devices and the use

of subtraction devices simpler in circuitry and design.

I.2

5!

Let us construct an optimum filter by the spectral method. Since

a trapezoidal video pulse has the spectrum 1271

3 M sin* i
4 4

:'V 
+

then, making use of (1.5.1) and assuming for simplification that C-
(T - T )/2V and to t,4 =T/2, we find that an optimum filter should

have the transfer function

+1 (2.1.4)
~e~i)(I-e

By consideration of this expression we again arrive at the con-

clusion that an optimum filter consists of two integrating, two delay

and two subtraction devices (Fig. 2.1.5, c).

Since a triangular video pulse is a special case of a trapezoidal

video pulse when the length of its plane part is selected equal to

zero (r1 = 0), then a filter optimum to a triangular video pulse can
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easily be produced from a filter optimum to a trapezoidal video pulse,

having assumed in the latter case that Tl 0.

4. Building a Filter Optimum to a Video Pulse of More Complex Shape

By using the foregoing method, one can build an optimum filter for

any pulse whose envelope consists of some number of segments of

straight lines, parabolas and algebraic lines of as high an order as

j.desired. This optimum filter will contain only integrating, delay,
addiionsubracionand amplifying devices [7]. 5

adTheonubrctintertn devices in this filter is a unit greater

than the highest order of the algebraic lines whose segments comprise

the pulse envelope (j,n this case the horizontal straight line must be

regarded as a zero-order line). The number of delay devices (without

leads) is equal to the number of segments of which the pulse envelope

is comprised (if one does not consider segments corresponding to a sig-

nal identical to zero). The total delay time provided by these devices

is equal to'the length of the pulse signal. There can be several ad-

dition-subtraction devices. The number of amplifiers is not greater

than the number of segments. In principle all the amplifiers can be

omitted. It is sufficient to provide voltage dividers in the corre-

sponding circuits in this case.

As indicated below (see section 2.4), the structure of an optimum

filter is weakly dependent on slight changes of signal shape. Because

of this, one cannot fail but take into account the small details of

signal shape when designing optimum filters. Taking this circumstance

into account permits one to considerably simplify the construction of

filters sufficiently close to optimum.

5. Building Optimum Filters for Correlated Noise

Let us consider construction of an optimum filter for detecting a

square-wave video pulse (Fig. 2.1.1) on a background of noise whose

spectral intensity is a function of frequency Fl(cw) (this noise is

called "colored" or correlated). This construction can be accomplished

most simply by the spectral method [38].
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Lot the si;pct ii Int ti.] tv of input ncise be a decreasing fre-

VuencV function (ctr 'L, I i . 'ij. 2.].(I)

where 2a is the spectralolsL .I.. Ix ti' zero frequency and g is 58

a constant that characterizes the width of the energy spectrum of input
noise and is numerically e uivalent to the frequency on which the spec-

tral intensity is one-half that on the zero frequency.

' ' 1 ' -

7 3 0

Fig. 2.1.6. Energy spectra of noise.

The considered noise has the autocorrelation function

ag -AltI
R, () "-e

and accordingly can be produced by passing white noise with intensity

(1.2.4) through a low-frequency RC filter with time constant g-1 = RC

[17]. This normal noise is a Markov process [39].

According to (1.8.1), an optimum filter should have the following

transfer function in the given case

C L (I -e ).... . •

O- (2.1.5)

Assuming for simplification that C1 = 2ag 2 , we find

S.)U-- . (2.1.6)

Since jw is the transfer function of differentiating device D, an

optimum filter in the considered case consists of a combination of an
integrating device, device with transfer ccefficient g2 and 59
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differentiating and subtraction devices and also a combination of a

time delay device equal to pulse length T and subtraction device (Fig.

2.1.7, a).

With an unlimited increase of g, i.e., with expansion of the ener-

gy spectrum of input noise, (2.1.5) changes to (2.1.1) and the derived

block diagram of an optimum filter degenerates to the block diagram of

an optimum filter for white input noise (Fig. 2.1.2).

.1 ./ >....... ... a

b)

Fig. 2.1.7. Block diagrams of optimum filters
for square-wave pulse with uncorrelated noise.

Let us consider the second case when the spectral intensity of the

input noise increases with an increase of frequency by the law

2aso,

approaching the constant 2a (Fig. 2.1.6, curve 2). Here constant g has

the meaning of the frequency on which the energy spectrum of noise is

one-half its own maximum value at w = -. The autocorrelation function

of this noise is

R, (t) = a(t)l-1-e -" '

2

It can be regarded as the result of passage of white noise with

intensity (1.2.4) through a CR filter of upper frequencies with time

constant g-I = RC. The transfer function of an optimum filter is then

M I- e(

I"j (,g - (2.1.7)

Accordingly, in the given case an optimum filter consists of an 60

integrating device, a combination of two integrating devices, a device

with transfer coefficient g2 and a subtraction device and a combination

of a delay device by time T and subtraction device (Fig. 2.1.7, b).
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This optimum filter degenerates into an optimum filter (Fig. 2.1.2)

constructed for the case of white noise with an unlimited decrease of g.

It follows from comparison of the block diagrams of optimum filters
(Figs. 2.1.2 and 2.1.7) that the nonuniformity of the energy spectrum of

input noise may lead to appreciable variation of the structure of an
* optimum filter. The structure of an optimum filter is complicated event more if the length of its pulse characteristic is limited (40].

2.2. Design of Filters Optimum to a Single Radio Pulse Signal of
Specific Shape

1. Transfer Function of a Filter Optimum to Radio Pulse Signal

Construction of filters optimum to video pulse signals received on

a normal noise background was considered above. However, radio pulse

signals are usually fed to a receiver. They can be optimally filtered

in some cases in the radio channel of the receiver, i.e., at the high

or intermediate frequency. A very important property of filters opti-
mum to radio signals is their invariance with respect to the initial

phase (see section 1.6).

In this regard let us consider the construction of filters optimum

to a radio pulse signal of specific shape. This construction can be

simplified considerably by using the mutual conformity of optimum fil-

ters for video and radio pulse signals. The latter follows from the

relationship between the transfer functions of these filters. Let us

establish this relationship.

It is well known [441 that the spectral density of a radio pulse 61

Sp (w) is about equal to half the product of the spectral intensity of
its envelope 1(w) in which the independent variable w is replaced by

w - wo and the phase multiplier ei *:

S'()-- ( je4I where wo is the carrier frequency of the radio pulse and 0 is the in-
itial phase of oscillations of this frequency.
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Because of (1.5.1), a filter optimum to a radio pulse signal has

the transfer function

9p ) = Csp()eCS w- ,

where C1 and t, are constants.

Since the transfer function of a filter optimum to the envelope

of this signal is:

9 () = CS* () eU,

then assuming that C_ r2Cze- and to = tI , we find the relation

') - - (2.2.1)

that establishes the relationship between the transfer functions of

filters optimum to a radio pulse signal and its envelope, respectively.

Thus, it is sufficient in the transfer function of a filter opti-

mum to its envelope to replace independent variable w by w - wo to
produce a transfer function of a filter optimum to a radio pulse of a

given shape.

2. Congruence of Filters Optimum to Radio Pulse Signal and Its
Envelope, Respectively

Because of (2.2.1), filters, one of which is optimum to a radio
pulse signal and the other of which is optimum to its envelope, have

the property of congruence.

Congruence is also inherent to the components of these filters.
One or several components of an optimum filter for a radio pulse cor-

responds to each component of the filter optimum to the envelope of 62

this pulse.

it was shown in the previous section that the components of filters
optimum to video pulse signals can be integrating, delay by time t3,

amplifying and addition-subtraction devices. The transfer functions of

the latter two types of devices are indepenent of frequency in the
working frequency band. Therefore, their notations coincide on the
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working frequency band. Therefore, their notations coincide on the [
functional diagrams of optimum filters.

The first two types of devices have frequency-dependent transfer

functions:

H N _;-

* The corresponding components in an optimum filter for a radio pulse

have according to (2.2.1) the transfer functions

()(2.2.2)

and

Since the phase angle w0t3 is much greater than 2 7 and if the phase of

harmonic oscillation is inverted to any number which is a multiple of
2n, its value does not change and then

an. e2 (!6 + + ".L1 044,+

i and

where

E(x) is the whole part of the number x and R(x) is the fractional part

of this number;

Therefore, the combination of the same series-connected delay de-

vice and phase shifting device by angle X(t3 ) corresponds in an optimum 63

filter for this radio pulse to the delay device by time t3 used in an

optimum filter for the video pulse envelope of the radio pulse.

It is further shown (in item 5 of the given section) that transfer

function (2.2.2) is approximately realized by a highly selective reson-

ance amplifier. Therefore, a highly selective resonance
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amplifier corresponds to the integrating device in a filter optimum to
the video pulse envelope of a radio pulse.

3. Building Optimum Filters for Radio Pulses

V Using the congruence of the components of optimum filters for a
radio pulse and its envelope indicated above, it is easy to construct

an optimum filter for a radio pulse by the known structure of an opti-{ mum filter for its envelope.

To do this, every integrating device in the block diagram of a
filter optimum to the envelope of the considered radio pulse should be
replaced by a highly selective resonance amplifier, the time delay de-I vice t3 should be supplemented with a phase-shifting device by angle
X(t3 ) and the amplifier and addition-subtraction devices should be left
unchanged.

Using these rules and the results of the previous section in which

optimum filters were designed for video pulses of different shape, let
us construct optimum filters for radio pulses of square-wave and rec-

* tangular shape. As a result we find the following results.

An optimum filter for a square-wave radio pulse (Fig. 2.2.1, a)
consists of a highly selective resonance amplifier, a delay device by
time T equal to its length, a phase-shifting device by angle X(Tr) and
a subtraction device. A somewhat different solution of this problem

belongs to Rochefort (45) and to Ya. D. Shirman.

In the case of a trapezoidal radio pulse, an optimum filter is a

combination of two highly selective resonance amplifiers, two delay
devices by time (Tr - Tl)/2 and (Tr + T1)12, phase-shifting devices by 64

angles Xand Xand subtraction devices (Fig. 2.2.1, b).

If the time parameters of the envelopes of radio pulses (length T,

length of plane part Tl and so on) are selected as multiple to the

period of their carrier oscillation To - 1/f o, then the product of
this time parameter of envelope ti by the carrier frequency fo of the
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radio pulse will be a whole number, as a result of which the corre-

sponding phase inversion angle x(ti) = 27iR(foti) approaches zero. In

this case it is no longer necessary to use phase-shifting devices when

constructing optimum filters and their block diagrams are simplified

somewhat.

a)

-C H, 2

Fig. 2.2.1. Block diagrams of optimum filtersfor radio pulses.

Key: (1) ,highly selective resonance amplifier

However, the phase shifters indicated above must still be used in

practice to compensate for the inaccuracy of manufacturing the delay

devices, which may provide a delay of oscillations by values somewhat

different from the calculated values.

4. Characteristics of Highly Selective Resonance Amplifier

Based on the equivalent circuit of a highly selective resonance

amplifier (Fig. 2.2.2) and assuming that a generator (pentode or trans-

istor) is used in it with high wave impedance Ri, it is easy to write 6

the expression for the transfer function of this amplifier

I -•,S SX

R+1(Cl ill) I UQ ( i

where Z is the equivalent impedance of the circuit; L is the'€?T
equivalent wave impedance of the circuit; Q V- - is the Q-factor ofIthe circuit and , is the resonance frequency of the circuit.
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U - --- ......

T, g . ... 2. ; aIL:Int c- _;U!t ofh i c1I.y sel2ective resonance amplifier

(VIPU; -Vsohoiz1 Djratcl'nyv rezonansnyv

On frequencies that &atisi- ,' ccnaition

(2.2.3)

(for which it is necessary that the amplifier circuit have high ()-fac-

tor and that the resonance amplifier have high selectivity), the follow-

ing approximate expression is valid: 66

A (w) (2.2.4)

Thus, in the frequencv band considerably wider than the amlifier

bandpass tS = w0/Q but narrow compared to the mean (resonance) frequency

o, the transfer function of a highly selective resonance amplifier is
approximately but sufficiently reliably described by function (2.2.4),

which differs from function (2.2.2) only by the constant coefficient.

Based on this, one can state that a highly selective resonance

amplifier corresponds to an integrating device in an optimum filter for

the envelope. Therefore, it is natural to call it a high-frequency in-

tegration device.

The radio signals in which the carrier freonency coincides with

the resonance frequency of this aplifier and the width of the spectrum

is much greater than its handpass are integrated in this amplifier.

The need for the latter follows from the fact that the harmonic compon-

ents of the signals within the bandpags are transmitted with slight

frequency distortions and therefore they are not integrated, unlike

those components which fall on the slopes of the resonance curve of

the amplifier. In this regard it is necessary for integration of the

radio signal in a resonance amplifier that the relative fraction of its

harmonic components impinging in the bandpass be low.
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As is known, a resonance amplifier has the pulse characteristic

where V4 - is the frequency of free oscillations of the circuit

* approximately equal to its resonance frequency wo and =R/21, is the

attenuation factor of oscillations.

For time intervals whose length satisfies the condition Ct «1l, 67

* attenuation can be disregarded. Therefore, the pulse characteristic of

a highly selective resonance amplifier has the form

* ~(t) (2.2.5)

Making use of this expression, it is easy to show that the pulse

characteristic of a filter, whose block diagram is shown in Fig. 2.2.1,

a, is a square-wave radio pulse of length T and frequency wo at CT <<l,

which also confirms the optimum nature of this filter.

2.3. Operating Mechanism of Optimum Filter for Square-Wave Video Pulse

1. Preliminary Remarks

Construction of filters optimum to single pulse signals was con-

sidered above. It is very important to understand why one or another

optimum filter consists of these rather than different components, i.e.,

to determine its operating mechanism.

To do this, one must analyze the passage of the pulse signal and

noise through different components of the optimum filter and combina-

tions of them.

f The passage of noise is analyzed by the time method (using corre-
lation functions. The same results are found when this problem is con-

sidered by the spectral method.

The passage of signal and noise through an optimum filter for a

square-wave video pulse is analyzed below. It is shown in item 2,
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section 2.1 that this filter consists of an integrating device, time

delay device equal to the pulse length and subtraction device (Fig.

2.1.2).

Both an integrating RC-circuit and an integrating amplifier [185] 68

whose time constants 8 = RC and 8 (1+ K)RC are much greater than the

length of a square-wave video pulse, can be used as the integrating

device. Here K is the amplification factor of the UPT contained in the

integrating amplifier. Let us subsequently assume that an integrating

device is a combination of an integrating amplifier, a special case of
which is an integrating circuit at K = 0, and an auxiliary amplifier

with amplification factor RC. The latter is not required and is in-

troduced only to simplify the following expressions.

The integrating device then has the transfer function

i=1

where

p=KRCr. (2.3.2)

2. Passage of Signal

If a pulse signal acts at the input of an optimum filter (Fig.

2.1.2) only from t = 0 to t = T and has amplitude Vl (Fig. 2.3.1, a),

then the signal voltage at the output of the integrating device varies

by the law (Fig. 2.3.1, b)

at 0<1 <,c,

vat) V (I - )e -  )e- - -  (2.3.3)

~Ift VI I -

at %<t-<P. .

w 63O1 MONI



After passage through the delay line, this oscillation is delayed
by time T (Fig. 2.3.1, c). We find at the output of the subtraction
device a pulse of approximately triangular shape (Fig. 2.3.1, d): 69

v,, (t)- =V,,3 I'-,- e-V -, v,t (Il - vjt
' ~ -7

at 0 -t- ,

V, () = V, (2e- - - /

VX)==) PVI(ee-t)

V, 0
at 2%<t

It has amplitude

-- I V: (2.3.5) 70

and a length approximately equal to 2r.

69

0 r

0 C) Pr t

0 d)T 2f

Fig. 2.3.1. Time diagrams of voltages in
optimum filter for video pulse.

The transfer coefficient of the peak signal with optimum filter 70

comprises
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9V, (2.3.6)

3. Passage of Noise

Let us assume that the noise at the input is white noise and has

spectral density (1.2.4). Let us use formula (1.7.1) to calculate the

autocorrelation function and noise at the output of the integrating

device.

Since the pulse characteristic is a time derivative of the trans-

fer function, in the considered case due to (2.3.1),

t

and therefore, accordiig to (1.7.)
+ I' U + It Il

Rd()=a e'e - - p _ du- Te-. (2.3.7)

Hence, it follows that the noise at the output of the integrating de-

vice has output
24

2=R.(0)= - (2.3.8)

and a normalized correlation function

I"

e- (2.3.9)

Thus, the integrating device converts the uncorrelated noise to a

noise oscillation with correlation time equal to the very large time

constant of this device 8. In other words, the integrating device 71

causes strong correlation of the noise passing through it. This is

physically explained by the fact that the integrating device eliminates

rapid variations of input noise oscillation, filtering its high-fre-

quency components. As will be seen from the following, this is also

used to attenuate noise with an optimum filter.

The oscillation from the output of the integrating device (Fig.

2.1.2) is fed directly to the subtraction device and with delay by T,

i.e.,
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u4 (t)=U2 t)- U3 (t) =U2 (t)u(--) (2.3.10)

Therefore, the output noise is

04 = , (u )- in, ( 4)J' = nm (U,2

M [U- (t) + u2 (t -,) - 2u. (t) u, (t - =

=m 1 U22 (t)1 +, n' 1 2 (t- 2) - 2, [ 1(t) u. (t -

Since steady noise is being considered, then

X, 1U' () = ,. I 14 t 2 ; M., US (t)U. (t -_.), R% (.)

and

S 2*22 - 2R, 2d = 22 11 - r, (,)I = ail (I - e -c (2..11

It follows from (2.3.5) and (2.3.11) that the signal/noise ratio
at the output of an optimum filter comprises

2 '= V 4 V W V ( 2 . 3 . 1 2 )

which is found to be in complete agreement with formula (1.2.11).

4. Operating Mechanism of Operating Filter for Single Pulse

The pulse signal is stored by the integrating device to level
(2.3.5). A delay of this signal by time T and subsequent subtraction

of it from the oscillation fed directly from the integrating device
does not alter the peak value (amplitude) of the signal. 72

The white noise passing through the integrating device is strongly

correlated. It is fed to the subtraction device directly and with de-

lay by time T much less than its correlation time. The level of output

noise is reduced considerably as a result of subtraction of the two
strongly correlated noise oscillations. Indeed, it follows from
(2.3.11) that the noise output is transmitted by a combination of the

delay and subtraction defices with coefficient --

2'

whose value, due to (2.3.2), is very low.
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The noise suppression by combination of the delay and subtraction

devices can also be explained by the spectral method (46].

If the integrating device is used for continuous integration of

the input oscillation of both the signal and noise, then a combination

of the delay and subtraction devices limits the time of this integra-

* tion to the length of the signal at the input. If these devices are

absent, the signal would be stored (integrated) only during its length
while the noise would be stored for a considerably longer time. The
signal/noise ratio at the output would be very low.

Thus, the combination of delay and subtraction devices performs

the functions of automatic integration time limiter of the input oscil-

lation up to the length of the pulse signal.

The concepts presented above are essentially the development and

* concrete definition of the remarks made in section 1.4.

Let us note that the considered optimum filters consist of linear

components, the order of arrangement of which can be varied. Thus, for

* example, an optimum filter (Fig. 2.1.2) in which the integrating device

precedes the combination of delay and subtraction devices is fully

equivalent to an optimum filter in which the integrating device is pre-

ceded by a combination of delay and subtraction devices. Moreover,

preference is frequently given to this circuitry of an optimum filter 73

in practice since the level of processed signals and noise decreases

in it as a result of subtraction, due to which the integrating device

operates in a lighter mode.

2.4. Reduction of Signal/Noise Ratio Due to Deviation of Filter and

Signal Characteristics From optimum

1. Preliminary Remarks

It was shown above that a filter hardly differing from an optimum

filter can be constructed for a signal with as complex a shape as

desired. Very important for practice is the problem of how significant

deviations of its characteristics from the optimum and also variation
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of the shape of the signals received by this filter are for efficient
operation of the optimum filter. Slight deviations of the character-
istics of an optimum filter, like slight variation of signal shape that
lead in both cases to a mutual error of the filter and signal, are
always observed in practice.

This problem is also considered below for different special cases.

2. Variation of Shape of Video Signal or Envelope of Radio Signal With
Retention of Signal Length at 0.5 Level

Let a symmetrical trapezoidal video pulse having the same length
t at 0.5 level act on the input of a filter (Fig. 2.1.2) optimum to a

square-wave video pulse of length T (Fig. 2.1.1):

=(t) 0 atta 0 H t; 2 -I

,(t) 'at)< t<V, M) V', at - ,< <,
(=V_'I (2"-t-v -t) at t < 2%- 1,

where Vi is the amplitude of this pulse and Tj is the length of its 74

plane part (vertex).

Since the peak value of the signal at the output of an optimum
filter is dependent on the input signal energy [see (1.4.4)], then let
us select the amplitude of the trapezoidal pulse such that its energy

E, 21 (t) dt =_ "2% + )

is equal to the energy of a square-wave pulse with amplitude V1 opti-

mum to the filter. Then

v'=v( V2-+-) (2.4.1)

The voltage at the output of the integrator (Fig. 2.1.2) is an integral

of input voltage:

U,= u, (z) dx.

due to which
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v(t)=O at e<O,

Sat-

V, (t) V at t2-

The voltage is fed to the lower output of the subtraction device with

delay by r, due to which

(t) 0 at t< .,V,() , (t - V)s
V8 -t 2 atct42%-

The following voltage acts at the output of an optimum filter 75

V4 (t) = V2 (t) -V 3 (t) = V2(t)- 2 (t-2),

which is described on interval T < t < 2T - TI by the expression+El Mt = v', 1 + (2t -j ,- t)

Investigating it for the extreme value, let us determine the moment

that the output voltage reaches the maximum value

% -
2 "

At this moment the voltage at the input of the filter passes through

level O.5V1 and reaches a maximum value at the output

V.= - (3-g + ,)

In the case of a square-wave pulse optimum to it acting on the filter,

the output voltage has a maximum value of (2.3.5). It follows from

(2.3.5), (2.4.1) and the last expression that the loss in the signal/

noise ratio in output due to the mutual nonoptimum nature of the filter

and signal comprises

V-- , ==16 2+x (2.4.2)
V2 3 (3 + x)"

where x - l/T is the relative length of the pulse peak.
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The loss in power decreases monotonically (approximately linearly)

with an increase of the relative length of the peak (Fig. 2.4.1). When

the pulse peak has the same length as the pulse at the 0.5 level, i.e.,
T= T and x = 1, a trapezoidal pulse degenerates to a square-wave pulse

and there is no loss (G = 1). At zero 1e-ch of the peak, the pulse
acquires a triangular shape and the loss comprises only 1.185 in this

case.

Accordingly, if the pulse shape varies from square-wave to triangu-

lar but its energy and length are retained at the 0.5 level, the signal/ 76
noise ratio in power at the filter output, optimum to a square-wave
pulse, deteriorates by only a total of 18.5 percent.

This permits one to conclude that the structure of a nonoptimum
filter is not critical to variation of signal shape. The reason for
this is that the criterion of the maximum signal/noise ratio is inte-

gral. Therefore, the signal at the optimum filter output is an inte-
gral of the input signal taken on a segment of length T, which charac-
terizes the length of the input signal at the 0.5 level. The value of
this integral is hardly dependent on the signal shape if its energy is
kept constant.

7.2

U 42 49 45 40 z~

Fig. 2.4.1. Dependence of loss
due to relative length of pulse
peak

The foregoing is illustrated by Fig. 2.4.2, in which square-wave
and triangular video pulses of equal energy are shown and the part of
the triangular pulse which participates in formation of the maximum
signal at the matched filter output is cross-hatched. One can clearly
see from the figure that the areas (integrals) of the square-wave and
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0--4

Fig. 2.4.2. Time diagrams of
square-wave and triangular pul-
ses of equal energy.

*1cross-hatched part of the triangular pulses differ comparatively

little.

Due to the noncritical nature of the structure of optimum filters

to variations of signal shape, there is no need to take into account

small details of the shape of the video signal or the envelope of the
radio signal when designing them.

3. -Variation of Signal Length 77

If a square-wave video pulse of different length Tj and amplitude
Vacts on the input of a filter (Fig. 2.1.2) optimum to a square-wave

video pulse of length T, then the voltage at the output comprises

andV' 4 =V'1 ;'. if ,

If there is an optimum signal, V4 =VlT. If the energy of these

two signals is equal,V,,=,

Therefore, the power loss in signal/noise ratio due to variation

of signal length is

V at ;

at ~ (2.4.3)

Accordingly, if the signal length varies n times, there is a de-
crease of signal/noise ratio by the same number of times.
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Specifically, variation of signal length by + 10 percent leads to 10
percent power losses in signal/noise ratio.

Thus, an optimum filter is weakly critical to slight variations of

signal length.

4. Variation of Signal Amplitude Spectrum

Let us assume that the signal was deformed due to some reason or
other, which caused variation in the signal spectrum. In this case
the spectrum of the received signal is

where Sl(w) is the spectrum of the undistorted signal, D(.) = A(W)ejB(w)

is a function of distortions of the signal spectrum and A(w) and B(w)
are a function of distortions of the amplitude and phase spectra,
respectively, of the signal.

The signal at the output of an optimum filter then has the 78

* spectrum

S'2 (.) = &'I (-) K (=) - S', (n) CS*, (w) e -
= CD (.) S2 (-) e1*"

and an instantaneous value of

a', (t) = D (-) S' (-) el"'-d-. (2.4.4)

Specifically, in the absence of spectral distortions we find (1.5.5).

Let us first consider the case when only the amplitude spectrum of
the signal is distorted while the law of these distortions is harmonic

[481:
D ()=A (a) = a. + a, cos.w = a. + - ("+ e .(24

COSr (2.4.5)

Then the output voltage, according to (2.4.4), is

f C--- S2 (.)e' ' d- +
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+.a .- -S . . . .e . . ..d-a + - ).. . -S (w ) e.. .... .. d .

Comparing the terms of this expression to (1.5.5), we find

v',({t) = o,(t+c)+aoV,(t)+-t- (2.4.6)

Accordingly, the signal at the output of an optimum filter is in-
creased ao times and two additional signals of the same shape appear
with relative amplitude al/2, shifted in time with respect to the main
signal by + c, as a result of the cosine amplitude-frequency distortions.

Since the signal length at the filter output is double the length
Tl of a signal optimum to it, then signals (2.4.6) do not overlap pro-
vided that

c>2v,. (2.4.7)

These signals partially overlap at c> TI. However, it does not affect
the peak value of the output signal, which is ao times greater than an
undistorted signal. In this case the signals at the filter input

(t = I A 1 ,)e'w=t -. V( + C) +
-2 

79

+ a.v 1Q) + 4v. (ti-c)

do not overlap at all. Squaring this expression and integrating the
result in infinite time limits, we find with regard to the absence of

overlapping that the total energy of the input signal is E', a=( +4 E,.

where El is the energy of an undistorted signal.

0

00C -0 0

Fig. 2.4.3. Loss as function of
relative amplitude of frequency
distortions.
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Accordingly, the square of the peak value of the output signal in-

creases aj times due to amplitude-frequency distortions by law (2.4.5)
and should have been increased with optimum filtration in proportion to

the signal energy, i.e., a2 + a2/2 times. Therefore, the power loss in

signal/noise ratio due to mutual nonoptimum nature of the signal and 80

filter comprises
G= I 2+ -2 0 (2.4.8)

and increases with an increase of the relative amplitude of frequency

distortions (Fig. 2.4.3). Specifically, a 10% power loss corresponds

to ai = 0.472 a0 . Accordingly, an optimum filter is weakly critical to

slight harmonic variations of the signal amplitude spectrum.

5. Variation of Signal Phase Spectrum

Let us consider the case of sine-curve phase-frequency variations

of the signal [48j:

D 0w) = -i~w = ab313w

Then according to (2.4.4), the output signal is

cI () = S 1 (") eIIe * 6 + ' n OId.
-40

Since (25, 48]

e"b in se = •,

where jk(b) is a k-order Bessel function of first kind, then by substi-

tuting this expression into the previous one and changing the order of

integration and adding, using (1.5.5) and taking into account that

J-k(b) = (-l)kJk(b), we find

V'(t)= EA(b) v (t+ k)+J.(b) v (t) +

+ (2.4.9)+ V - )D% (b) V. (t - k).

Accordingly, harmonic phase-frequency variations of the input

signal lead to the fact that the main output signal is multiplied by

JO(b) and an infinite number of pairs of satellite signals having the

same shape as the main signal, shifted in time with respect to the main 82

signal by t kg, where k is a whole number, and multiplied by Jk(b),
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appears around it; moreover, all the satellite signals shifted toward

an advance have the same initial phase while the phases of any two ad-

jacent delaying signals differ by 1800.

If amplitude b of the phase-frequency variations is low, then

since (25]

1, M4T and J-Nat

expression (2.4.9) is simplified:

2V. -V c),

and mainly has the same nature as output signal (2.4.6) with cosine

amplitude-frequency distortions.

If ondtio (24.7 i fuflld th pekvleo h inli

totd inl 0 b tie. Teeoe h oe osi inlnie 8

44* .8 .

Fig. 2.4.4. Loss and relative output of satel-
lite signal as functions of amplitude of phase
distortions.

If condition (2.4.7) is fulfilled, the peak value of the signal in

the case of phase-frequency distortions differs from that of an undis-

torted signal J0 (b) times. Therefore, the power loss in signal/noise 82

ratio due to phase-frequency variations of the signal is

G-(I.(b)l-,. (2.4.10)

The relative peak output of the first satellite signal comprises

12 (b)
Y= -" (2.4.11)

These two values increase (Fig. 2.4.4) as the amplitude of the
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* . . . . . . . . . . .

phase-frequency variations increase, reaching 1.72 and 0.333 at b = 1

and 4.83 and 1.57 at b = 1.6, respectively.

Accordingly, the effect of phase-frequency distortions of the sig-

nal is insignificant only with relatively small value of them. It is

significant that the degree of distortions of the output signal depends
on the absolute (rather than the relative) value of the phase-frequency

variations.

6. Linear Phase Changes of Signal

By analogy with (1.3.3), the complex voltage envelope at the out-

put of a linear selective system can be represented in the form of a
Duamel integral for envelopes [10, 28, 491

o (x)R (tx) dx, (2.4.12)

where U 1 (t) and H(t) are the complex envelopes of the input voltage and

pulse characteristic of the system, respectively. Specifically, for an

optimum filter, according to (1.3.6),

;e r, X -, (t 0 - t-+ x) dx. (2.4.13)

If the voltage of the signal is fed to its input, we find at the 83

output V,(t e- .j"- V, (x) V'*, (t, - I + x) dx.

0V (t2) .e-j* V" (x) dx = CE,e

U, (4) = Re (W, (o) el",9= CE,.

Let the input voltage differ from the optimum signal only by phase
( ) , i .e . V U , t - (t) epw )t

9Then

'.(t) Cf e-'t 5 V ' (x) V (x t + ,.) e ")Idx.

and specifically at tt,-.-.
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.. .. .. . . . . .. -.. . .. .. ... .%

f, ( - ,) -;- e- , (x) VI (+ - ,"4 '(l dx.'

-

If V,(t)_V,(t)e" ' (' , where Vl(t) and (t) are the amplitude and phase

functions of the signal, respectively, and the signal has constant out-

put over its entire length r, i.e.,

and V(t)--(2~L )1 1 2 at O< t < iV, (t)=0 at other values of

then a of

U2 cos6(x, -)dx at E; o,

U. ( _ )_t
-- --- cos6x .s)dx at ri< 1. I

where 9(x, e) =4P (x)-P(x+E) (x--eOe.

If (t) = 0 at 0 < t < Tand 101 < ., then assuming that e is

small and comprises a fraction of the period of the carrier oscillation

27/w 0 , we have

0 (x. 8) x .% - -0 - (P' (x) =4- '0 + C?' (x) a -- Wo,

since the rate of variation of the phase function is usually small

compared to the carrier frequency. Therefore

u. (C - ) CE,(i " .) co (4, -

At ,==-_L this expression reaches a maximum:
We

,, ) CE,,

since

Accordingly, inversion of the phase of input oscillation by angle

,O essentially leads only to a shift of the moment of the maximum out-

put oscillation by the time --#

I.,zesuontly assuminq that the constant phase shifts of the input

or* re :.Lnatod, we will be interested in the output volt-

-v ,~' •-h eigqvra ends



CO ~Jcs )(t) dt. (2.4.14)

0

Let the distorting phase function be linear over the signal length:

(0---- ? -- atO<t <t, (2.4.15)

where 1m is the incident wave of phase during the length of the pulse.
Then, substituting this expression into the previous one and calculat-
ing, we find

sin
-s ,,... -- CE ---

Accordingly, the loss in signal/noise ratio comprises

G(2.416) 85

and increases with an increase of the incident wave of the phase (see
curve 1 in Fig. 2.4.5). At m = 0.5iT and 0.9w the loss comprises 1.25
and 2.05, respectively.

0" i

2

S I' - - -2 

L2

o 4 48 1.2 0

Fig. 2.4.5. Dependence of loss on incident wave of
phase.

A linear varying deviation of phase (2.4.15) is obviously equiva-

lent to detunling F= -10. If one assumes that a power loss on the
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order of 20% is permissible, then the permissible detuning is

0. 2

which is rather difficult to provide, especially in the case of signals

of great length.

Thus, an optimum filter is very critical to variation of the car-

rier frequency of the received signal.

We note that in some cases of angular modulation (for example, 86

with linear frequency modulation), the requirements on the frequency

stability of the received signal can be sharply attenuated (see section

3.8). However, in this case the maximum output signal is observed with

a considerable time shift rather than at the moment the signal ends, as

was considered above.

One can also consider other laws of phase variation of the input

oscillation and one can determine the laws achieved in this case. It

is obvious that one of the worst cases (in the sense of a decrease of

output signal amplitude) will be intermittent variation of phase:

----- at 0<t<-.-
~~at +<,Y

In this case according to (2.4.14), the power loss is

0=

comprising 1.25 at tm - 0.28 (see curve 2 in Fig. 2.4.5).

However, consideration of random variation of output signal phase,

which is done below, is of great interest.

7. Random Variation of Signal Phase

Let variation of the input signal phase be a steady random process

with zero mean and normal law of probability distribution and known
autocorrelation function R(t) -a2r(t), where r(t) is a normalized

autocorrelation function. Let us determine the statisticalfunctioR ....wee.



characteristics of voltage at the output of an optimum filter [see

(2.4.14)1*:
CE, I r

U (el Jd) dt.
0

The mean value of this expression is
rF, [e ") .

fl (s;=, je1 (t I dJt.

Since the mean value ml(eJ') is a value at v = 1 of the characteristic

function of the normally distributed value (15, 20]:

O, (C) = m, (ei 1) exp 2in1 (' ) o -- @.

then

m, (ei) -exp [i, (+) --.- ]=exp (- !)

and

at (u,) =CE, exp (-M -- ).

due to which the power loss is

G-exp'. (2.4.17)

comprising 1.1, 1.2 and 1.5, respectively, at a - 0.309, 0.427 and 0.637
radian. Accordingly, the permissible variations are random phase vari-

ations on the order of half a radian.

The square of the output voltage is

= ( -) IeP + (t) dtf esp[- i+ (x)]d x -

and its mean value is

o Iinda)7 SL)~d jm n (up jt (t)- (x)]) dx.
0 0

Since, due to the normal nature of processes *(t) and *(x), 88

See [50] for solution of a similar problem with respect to antennas by
the statistical modelling method.

so



U 
-

.. * . .. r- ..... ... .. ...... - .... .... ..--.. . ..... .... ...... ..--

M , (exp j ['I (t) - (x)J) exp i [i, (I ()) -- M ( (x))]- 4 " X

X in. ['(0 - V'()1 m [M(t) - (x)J ~ exp X 4
X [, ' (t)] - 2m,[ (t) 4 (xj] + m, 4" (x)il} =

=exp{-.'[I -r (t - x)}.

then

m,(u,) -S(')3'dt exp {-o'[-r(t-x)j dx.

Changing the variable in the internal integral and then the order of

integration, we find

m, (u;)= 2 (CE,)' (I- y) exp {- ' I - r (ty)fl dy. (2.4.18)

The mean square was calculated on the Minsk-l ETsVM [digital com-

puter] for two types of normalized autocorrelation function:

-s r(t) = ep(-) a ii -

where 2 is the ratio of the correlation time of the process to the sig-

nal length (see Fig. 2.4.6), on which the solid curves show exponential

functions and the dashed lines show bell functions).

10 99

% 
%

6., 1, o ;

0.4#

Fig. 2.4.6. Autocorrelation functions of
signal phase variation.

The results of calculation (Fig. 2.4.7) show that there is a rapid 88

decrease of the mean square as the deviation of phase variation in-

creases and the more rapid it is, the less correlated the input signal
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The output voltage, according to (2.4.13), is then
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00u, (s) + V (t) I V2 (t) dt

and if
V ()= at Ot<,,

M V(tp=o at other values

Of t,
+ v(t)] dt.

Assuming that random process v(t) is steady with zero mean and
autocorrelation function R(t) - c2r(t), we find that the output voltage

* has the mean value

'n, "f. (1)1- - f (I + in, [v (f)i} dt= CE, (I + (2.4.19)

+ , Iv (t)I} = CE,
and the mean square is [29, 51] 91

", 4 (zfl = "!" )'(Z+ 2 f(,- x) Rx)dxj =

- (CE, , (I +af (q)I,

where

f(s) a 1 - x) r (x, a) dx,

a is the ratio of the correlation time of amplitude changes of signal

to its length.
fcAQ

40,

4 g /

4WV V* 45 i

Fig. 2.4.8. Dependence of variation of out-
put voltage on relative correlation time of
amplitude variations of signal. The solid
curve corresponds to an exponential function
while the dashed curve corresponds to a bell
autocorrelation function.
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Specifically, for the considered exponential autocorrelation
function

f (a)=2a [I - a(I - e (2.4.20)

and for a bell autocorrelation function

f~)~ V7 4- ~( e)] (2.4.21)

Consideration of these functions (Fig. 2.4.8) shows that rapid,.1weakly correlated amplitude changes of the input signal cause a compar- 92
atively small increase of the mean square of the output voltage, while
slow, strongly correlated changes are transferred almost without atten-

uation to the mean square of the output voltage.

The energy of the signal E1 -. ~6a)increases due to random

amplitude variations of the input signal. Since the mean value of out-

put voltage (2.4.19) does not vary, this is equivalent to a power loss.

GI-1 -- &. (2.4.22)

if one proceeds from the mean-square value of the output voltage,
the loss comprises

]+-7 R (2.4.23)

Its value is less than Gl, especially with strongly correlated ampli-

tude variations of the input signal.

The results permit one to conclude the weak critical nature of

the optimum filter structure to both random and regular (see item 2)

small amplitude variations of the input signal and its length (item 3)
and also to sufficiently small random and regular phase variations

(items 6 and 7).

2.5. Comparison of Optimum Filter for Simplest Signals With Resistance-
Coupled and Other Amplifiers

Let us consider passage of a square-wave video pulse signal and

noise through a resistance-coupled amplifier without correction.

if only the effect of spurious capacitance C0 is taken into ac-

count, then the transient function of this amplifier is also described

by an expression of type (2.3.1). only in the given case are there no
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auxiliary amplifier and time constant 8 = CORa, where Ra is the load

resistance of the anode circuit.

Therefore, the output signal has a peak value of 93

PI V./, KV, (I -e

where Vl is the pulse amplitude at the input, T is the pulse length and

K is the amplification factor.

By analogy with (2.3.8), the noise at the output has power

X2

Therefore, the ratio of the square of the peak signal value to

noise at the output of the resistance-coupled amplifier comprises

2 = 2 20 UIq2  .

Using (2.3.12), let us determine the loss in the signal/noise ra-

tio when using a resistance-coupled amplifier compared to an optimum

filter:
2

21(1 -e )'

Since the time constant of the amplifier is related to its bard-

pass at the 1//2 level by the function B - l/2w4F, the latter equality

can be rewritten in the following form:

e- P).(2.5.1)

where b - 4FT is the product of the bandpass by the pulse length, which

is naturally called the dimensionless bandpass.

Investigating (2.5.1) for the maximum with respect to b, we find

the equation
I-h +u44bion

the root of which is
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b,=AFIO0,200 (2.5.2)

and is an optimum value of the dimensionless bandpass.*

The dependence of the signal/noise ratio at the output of a resis-

tance-coupled amplifier (in fractions of the similar ratio at the out-

put of an optimum filter) on the bandpass of the amplifier is shown by

curve 1 in Fig. 2.5.1. Curve 2 reproduces the similar function for a
system of two series-connected resistance-coupled amplifiers. Consid-

eration of them shows the low critical nature of the optimum values of
the bandpass of a resistance-coupled amplifier.

Iz
a422 4

Fig. 2.5.1. Dependence of value inverse to loss on bandpass
of amplifier.

The loss is minimum with optimum bandpass and comprises for a
single resistance-coupled amplifier

Gm.=G(b=b,) iT. 122 7. (2.5.3)

Accordingly, the signal/noise power ratio at the output of a sin-

gle resistance-coupled amplifier with optimum bandpass is only 18.5%
(i.e., 0.9 dB) less than that at the output of an optimum filter. It
follows from consideration of curve 2 in Fig. 2.5.1 that the indicated

ratio at the output of resistance-coupled amplifiers with optimum band-
pass is only 14.3% less than at the output of an optimum filter.

The optimum values of the bandpasses of an ideal filter when receiving
a square-wave pulse and:of a filter with bell-shaped frequency charac-
teristic when receiving a bell-shaped pulse were first calculated by
V. I. Siforov [521 and A. P. Belousov [53, respectively.
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Calculations show that in the case of a triangular shape of the

vi'deo pulse signal, a resistance-coupled amplifier whose bandpass is

selected as optimum b2 = 0.3, provides a power loss on the order of
22% (i.e., 1.1 dB) in the signal/noise ratio compared to a filter op-

timum to this signal.

Based on the foregoing and also based on the mutual conformity of
filters optimum to radio and video pulse signals of the same shape (see

section 2.2, item 3) and on the equivalence of resonance and resistance-

coupled amplifiers [54], one can state that the loss in signal/noise
ratio compared to an optimum filter is approximately 1 dB for a square-
wave radio pulse when using a tuned amplifier with optimum bandpass of

bl = 0.4. The latter is valid both for a multistage tuned amplifier

and for signals of different shape [15, 55).

Calculations performed using the results obtained by S. I. Yev-

tyanov [49] and A. A. Kolosov [56] for the case of a square-wave radio

pulse and bandpass amplifier with critical relationship between its
circuits and bandpass of b = 1 show that the loss in the signal/noise

ratio comprises 0.6 dB in this case.

It follows from the investigations of N. A. Semenov [57] that the
signal/noise ratio at the output differs from the maximum possible by

no more than 0.5 dB, i.e., insignificantly, with the effect of bell-

shaped, trapezoidal, triangular and square-wave pulses on a UPCh (inter-
mediate-frequency amplfier] with bell-shaped ("probability") frequency

characteristic.

Accordingly, the use of an optimum filter for single pulse signals

of simple shape, related to some complication of the circuit and design,
permits one to achieve a comparatively small advantage in noise stabil-
ity and is usually unfeasible. This is explained by the noncritical

nature of the optimum filter to variation in the shape of the video

signal or the shape of the envelope of the radio signal (see section

2.4).

However, one should bear in mind that the pulse at the output of 96

a resistance-coupled amplifier with optimum bandpass (curve a in
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0.4 -

Fig. 2.5.2. Voltages at output of amplifier
(a) and optimum filter (b)

Fig. 2.5.2) has a length 57% greater at the 0.1 readout level and 78%

greater at the 0.05 readout level than at the output of an optimum fil-

ter (dashed curves b in the same figure). Therefore, the time resolu-

tion (in range) of the radio engineering pulse system deteriorates in

the case of using resistance-coupled and other amplifiers with optimum

bandpass (from the viewpoint of signal/noise ratio).
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CHAPTER 3 97

OPTIMUM FILTERS FOR PULSED SIGNALS WITH LINEAR FREQUENCY MODULATION

3.1. Broadening of Signal Spectrum to Increase Range Resolution

It was assumed previousl ' that the range resolution of radar sys-

tems cannot be made less than the distance corresponding to the length

of the emitted pulse [58-591:

2r

From this follows the conclusion that an increase of range resolution

requires shortening of the length of the emitted pulses, which is ac-

companied by a decrease of the energy of emitted signals with existing

restrictions on the peak transmitted power and because of this is ac-

companied by a decrease of the effective range of these syste's.

However, if the signal/noise ratio is sufficiently high, the range

resolution is determined by the pulse length at the output of the linear
part of the receiver. Therefore, the statement presented above is valid 98

only if shortening of the pulse length of the signal is not provided in

the receiver by corresponding processing of it. An example of the lat-

ter may be high-frequency differentiation (Fig. 3.1.1).

it permits a considerable increase of the resolution, which is

mainly limited by the receiver bandpass. In this case two pulses cor-

* respond to each input pulse. The second pulse can be eliminated by
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Fig. 3.1.1. Resolution of time-over-
lapped pulsed signals a and c in sys-
tem with differentiation (signals b

lul

and d are the result of differentia-

tion of signals a and c).

adding it to the first pulse delayed by time T1 using an adding device
with feedback delayed by T1 (Fig. 3.1.2, a and b). An attenuator with

transfer factor m whose value is somewhat less than unity (Fig. 3.1.2,

c) can be connected to the feedback circuit to eliminate its self-exci-

tation. Having taken m = 0.99, we find 100-fold attenuation of the

second pulse at the output.

+ '3
vLL

b) t
V)

Fig. 3.1.2. Block diagrams of tUrkovits optimum
~filters (a) and (c) and time diagrams of voltaqeq

(b)
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The device shown in Fig. 3.1.2, a has the transfer function

which is inverse to the spectrum of a video pulse of length Tl and of

single amplitude and coincides with the transfer function of an optimum

Urkovits filter [11, 60]. The latter is designed for optimum separa- 9S

tionof radar signals from noise formed by reflection from a large num-

ber of randomly arranged local objects. The spectral intensity of this

noise is proportional to the square of the modulus of the emitted pulse

spectrum Fl(w) = ulS(w)I2 . Based on (1.8.1), the optimum filter for

separation of the signals of this noise has the transfer function

V ( = C $*(W) e_J 1@. * $ ((*) C e -

Having assumed that to = 0 and C = uV, for a square-wave pulse of

length Tl we find (3.1.1).

This also shows that the device (Fig. 3.1.2, a) is an optimum

Urkovits filter. It did not find application in radar receivers due to
the fact that the effective range would be sharply reduced due to the

increased effect of white input noise. The latter is explained by the

fact that the modulus of the transfer function (3.1.1) is comparatively
small at low frequencies at which the spectrum of the received signal

is also mainly concentrated. The modulus of the transfer function is
appreciably higher at higher frequencies corresponding to less inten-

sive sections of the signal spectrum. As a result the noise level at

the output will be very high and it will be infinitely high with unlim-

ited bandpass.

If the filter bandpass is appreciably limited, this leads to sig-

nificant broadening of the output pulses of the signal.

Thus, the contradiction indicated above between the effective

range of the system and its range resolution does not find satisfactory

resolution even in this case.

It was shown in the first chapter that optimum filtration of sig-

nals must be used to ensure the greatest effective range. The output

signal should reproduce in this case the autocorrelation function of
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the input signal. To achieve high range resolution, one must have
this function in the form of a short pulse concentrated in the vicinity
of t = 0 and having short length T2. Therefore, the pulse spectrum at
the output of an optimum filter should be on the order of 1/T2 and that 100
at its input should be on the order of A23'r2. Accordingly, the spec-
trum of emitted pulses should be rather broad to achieve high range

resolution.

This can be achieved both by shortening the length of the emitted
pulses (which is unfeasible) and by angular (frequency or phase) modu-
lation of them by some law.

The emitted pulses should have high energy, which is achieved by
increasing the length with the usually existing restrictions of peak
power, to achieve high effective range. Therefore, the emitted signals
should have sufficiently high product of the width of the spectrum by
length to ensure both high range resolution and high effective range.
These signals are called wideband, complex modulated or complex.

The requirement of the wideband nature of the signal spectrum to

* achieve high range resolution is necessary, but insufficient. And if

the signal spectrum is wide, its correlation function may essentially
have either a single wide central pip in the vicinity of point t = 0 or,

along with a narrow central pip, several additional pips. The unique-

ness of range measuremen~t cannot be provided in the latter case.

The indicated circumstance, on the one hand, considerably compli-

cates selection of the shape of received signals and on the other hand
* determines this selection.

* 3.2. Pulse Spectrum With Linear Frequency Modulation

One of the simplest methods of broadening the spectrum of an emit-
ted radio pulse (61] is percentage modulation of its carrier frequency

* by linear law within the range of length:

at It<--.(3.2.1)

where Aw -21rAf is frequency deviation and wo is mean frequency. This
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pulse has phase 101

p= fdt + C W1+-I-+ C.

Having assumed that =0 at t z: 0, we find C =0. The instantan-

eous pulse voltage at It<-!! is then

~2% 2+ep ( 2%±z) (3.2.2)

This pulse has the spectral density

The second term is a rapidly oscillating function, due to which the in-

tegral of it is much less than the integral of the first term [10].

Therefore, assuming that

we find

where 3~()= WT''I A x

(3.2.3)

At the beginning of the pulse t, when m~*-~-,x 1 NO 0 102

As
and X2 - D and at the end of the pulse (ti) , when +2X=

and xj in V2_ Since

e +dx X Z(Y) =icc +x"dx +

+1 Isin j-x'dx .C (y) + )S (y).
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where Z(y) is a complex Fresnel integral, C(y) and S(y) are Fresnel co-

sine-and sine-integrals, respectively (25], we finally write
S-,- V , ,r.

S,(.)= V1 8A7-exp [- (X0 [ + (41

-V ut- [C + ] C i) + (x+ (3-2.4)

+ iS (41].

Accordingly, the amplitude spectrum (62] is

!!i + IS (X,) + S (X.)12)112 (3.2.5)

and the phase spectrum is

+ arctg ( (,) + S (%1) (3.2.6)
w r c C(xI) + C (XI)

Analysis of relation (3.2.5) and consideration of the curves in Fig.
3.2.1, a show that the ChM (frequency-modulated) amplitude spectrum of
the pulse becomes even more uniform as coefficient D increases in the

range of the band from w0 -(A/2)to w0 + (Aw/2)and decreases sharply on
the boundaries of this band. Thus, the signal spectrum is concentrated 103
within the indicated band with sufficiently large values of coefficient
D (which are also of the greatest interest). Calculations show that

almost 95% of all the signal energy is included in this band at D = 10
and this fraction exceeds 98% at D = 100 [63].

IDf

1.730

Fig. 3.2.1. FM amplitude spectrum of pulse (a) and component
of its phase spectrum (b).

The second term of the phase spectrum
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S )arctg (x+ S)

C (x,) + C (x,)

in the range of the same band is essentially constant, especially at
large values of D (Fig. 3.2.1, b).

Therefore, at large values of D when

(C(x,)-+.C(x)i'+ [S(x)+S(xJ'2 np --- <2

one can assume approximately that the amplitude spectrum is directly

angular:

atV, 2t
S1()uO at I2"-.I>T'.. (3.2.7)

2j

and that the phase spectrum is quadratic

P M s(e a), 9, at IsI....6*< . (3.2.8)

where e0 is a constant phase angle.

3.3. Characteristics of Optimum Filter. Signal at Its Output

Substituting (3.2.4) into (1.5.1) and assuming that C= 2

is constant, we find the following expression for the transfer function

of an optimum filter

2A, --. ]

Specifically, at large value of D, according to (3.2.7) and
(3.2.8),

AT P J-Wat <.s.
(-u)=O •at other values of .

In this case the spectrum oZ the output signal is

.,()-.,(,,)R(,,)=-- I/ exp(- it) 13.3.1)
at I

Ss 0 at other values of. e.
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-7 7 ..

Accordingly, the amplitude spectra of the signal at the input and
output of an optimum filter coincide at large value of D and with se-
lection of constant C made above.

The instantaneous value of the output signal is

V, (t) =Re I .q (e) ei"d. -
0

A.

-r (3.3.2)

V. expsi io (I - tj ~
~Re 1-./- xpw1

1A

nal(t- is)

It no longer has frequency modulation. Its complex amplitude (Fig.

3.3.1)

r', (t) = V1 1/1) ,a!( -.%Af (t - () (3.3.3)

has the form of the function sin x/x.

-4 I

Fig. 3.3.1. Time variation of complex amplitude of
output pulse.

The output pulse at the 0.637 level of the maximum value has

length T2 - I/Af. Therefore, the ration of the pulse lengths at the
input and output of an optimum filter comprises rl/T2 - &fTl = D. Due

to this, D is called a pulse length compression coefficient.

The output signal is symmetrical with respect to t - to and reaches
a peak value at this moment of v2mamc - Vl/, which is Artimes greater

than the signal amplitude at the input.

It follows from (1.3.5) and (3.2.2) that the pulse characteristic

of an optimum filter is
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h0)CV, cos (t - at) - -(t t) *

at It-t<-, (3.3.4)

h(t)= at Other values of t,

and its complex amplitude is

H(t) = CV, exp { 4- ]+~at it-2f< . (3.3.5)

R(t)=O at other values oft. J
Substituting this expression and also the expression for the com-

plex amplitude of the input signal into (2.4.12)

U, (t)-- V.(t)= V& erp (i -w t')

at I<T.
at other

V',(t)=S(t)=0 values of t j

and taking into account that the integral function Vl(x)H(t - x) is
distinct from zero in the given case only in the range
if to-%<t<t, and in the range t--t.--<x<%. if t,<t<t.+-t , let us
determine the complex amplitude of the output signal*:

at

V () CV,
at to --, < t < th

v X
I- t0+ +

[-p - - -(t - x - to),- ..to d-

i n S, itAr( 1-t.) (Ito) I to-
==- /Atit -t,}10

at

See (641 for the effect of a pulse of arbitrary length on an LChM

(linear frequency-modulated] optimum filter.
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C,2 Sin.*At (i - t,) I t _o

2 -f f (t -- i)

Selecting constant C the same as above, combining the two derived ex-

pressions into one and writing them in real form, we find at

S i n [ 6 ( t - t,)o t - '

,, R (t -t,) (3.3.6)
X cMas (-).

The amplitude of the output signal

{in [AY(to) (I - I t 1 I
V, ) = v, DI ,f( -t.) (3.3.7)

at It--ol<,, I

V-(--0 at other values of tJ

differs somewhat from the amplitude of (3.3.3) which was found by the

approximate method (we assumed that the amplitude spectrum of the input

and accordingly of the output pulse is square-wave). However, if the
compression coefficient is sufficiently high, this difference is very

*small, since in the range of the length of the main pip of the output

pulse It--t, < Because of this, (3.3.7) essentially coincides
- T-<

with (3.3.3) in the indicated case.

Thus, the assumption of the square-wave nature of the frequency-

modulated amplitude spectrum of the pulse is rather precise with large

compression factor. Therefore, one can assume that the amplitude-

frequency characteristic of an optimum filter is square-wave with a 101

high degree of accuracy:

K W=I at (3.3.8)
at other

K(o)=O values ofe.

and that the phase-frequency characteristic is a second-degree parabola

(Fig. 3.3.2, a):

(-) --- . +, s-o- - , -0. (3.3.9)

Thus, an optimum filter for a linear frequency-modulated pulse

consists in the first approximation of an ideal bandpass filter and one

with quadratic phase-frequency characteristic.
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t3 b)

Fig. 3.3.2. Phase-frequency character-
istic of optimum filter (a) and depend-
ence of its delay time on frequency (b).

3.4. Mechanism of Signal Compression in Optimum Filter

It follows from (3.3.9) that an optimum filter delays the spectral

components by the time

d+ (a)

Aa (3.4.1)

which is a linear decreasing frequency function (Fig. 3.3.2, b). This 109

phenomenon of the dependence of delay time on frequency is called dis-

person, characteristic (3.4.1) is called the dispersion characteristic

and a device with this characteristic is called a dispersion filter.

Let us present a clear explanation* of LChM compression of the

signal in an optimum filter. At moment of time t the instantaneous

signal frequency at the filter input is equal to w. Oscillation of this

frequency is fed to the filter output with delay by t,(w), i.e., at

moment t + t 3 (&), whose value according to (3.4.1) and (3.2.1) comprises

This explanation can be strictly substantiated by means of the steady

phase method [9, 82].
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t t'-) = + oV -",- l tJ - --

W-+ oo O ] '.
Accordingly, all the spectram components of the signal (regardless

of their frequency value) are delayed in the optimum filter by such

time that they are fed to its output simultaneously at moment to. Be-

ing cosine components and having the same zero phase, they also form

the peak pip of the signal as a result of arithmetic addition. The

significant increase of the output signal amplitude is also explained

by this [10, 87].

The circumstance that the output signal amplitude increases /"
times can be explained in the following manner. Let us replace the

linear frequency-modulated pulse (3.2.2) by a combination of N impulses

having the same amplitude, less than length by a factor of N and fol-

lowing each other.

Let the k-th pulse (where k = 1-N) of this combination have

frequency h-f.-- + - 2y , coinciding with the frequency of a linear

frequency-modulated pulse at moment of time t, -+

Let us select the number of pulses such that on the one hand their

spectra do not overlap and on the other hand there are no gaps in the 11

spectrum of their combination. In this case the spectrum of the total-

ity of pulses will essentially coincide with the spectrum of a linear

frequency-modulated pulse.

The conditions indicated above are fulfilled if the width of the

spectrum of any pulses is equal to the absolute frequency difference
1 Ahof the given and adjacent pulses, i.e.,/-- -- hence N=V =V

Thus, a linear frequency-modulated pulse is equivalent in the

first approximation to the totality / of unmodulated pulses of the

same amplitude and total length following each other whose carrier

frequencies are shifted by linear law with respect to each other.

These pulses are combined in time in an optimum filter, which also

leads to an increase of the output signal amplitude by a factor of /D

equal to the number of these pulses.
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Let us attempt to explain physically the process of shortening

the pulse length in an optimum filter and also the shape of the output

pulse.

It was already indicated above (see (3.2.7) and (3.3.1) that the

signal on both the input and output of an optimum filter has a square-j wave amplitude spectrum. In other words, it is the totality of an in-

finitely large number of spectral components of identical intensity in{the range of the band w-A 00+*(let us assume for concreteness
rA

that the spectral density at extreme frequencies of *=we.±-- is one-

half that at medium frequencies).

It was established in section 1.5 that the spectral component of

any frequency of a signal at the output of an optimum filter has the

phase
001) =fO(-to). (3.4.2)

The latter approaches zero at moment to of the maximum signal and in-

creases linearly as the time from the moment of the maximum decreases

and also with an increase of the frequency of this harmonic component

of the signal.

Therefore, the vector diagram of the voltages at the output of an 11

optimum filter is a "fan" of the vectors of these harmonic components

(Fig. 3.4.1). These vectors (except the two outer ones) have identical

amplitudes and at t = to coincide (Fig. 3.4.1, a), forming a very large

total voltage vector. As time increases, beginning at t = to, the
phase of all the vectors, according to (3.4.2), will increase by linear

law.

Assuming that the vector diagram (Fig. 3.4.1), on which only nine

vectors of harmonic oscillations differ&ng from each other in frequency

by the value k It , where k - 1-8, is shown instead of an infinitely

large number of vectors of the harmonic components of the signal ac-

cording to the accepted reasons, rotates counterclockwise with mean

frequency w wo, we find that the fan of vectors will unfold at t> to.
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Fig. 3.4.1. Vector diagrams of voltages at

optimum filter output

The vectors of the minimum w0 - L and maximum w0 + A frequencies

will occupy the extreme positions and the vectors of all the other fre-
quencies will occupy the intermediate positions. 112

SThe angle between the vectors of the maximum and mean frequencies
I comprises

while the angle between the vectors of the minimum and mean frequencies

will differ from the indicated value only by sign. Since these angles

are less than 9/2 in absolute value, all the vectors of the harmonic

components of the signal are arranged in the right half-plane. This

corresponds to the time interval t<t<t0+-47'.

At t=1,+2.7 the vectors of the extreme frequencies will be per-

pendicular to the vector of the mean frequency (Fig. 3.4.1, b) and at

t=tw+c they will become opposite to this vector (fig. 3.4.1, c). f
A7nthe latter case there is mutual compensation of the individual vectors

of the signal components and the vector of their sum approaches zero,

like the output voltage. Similar compensation of the vectors of the

components will occur at moments of time t=td.v.g S where k is any

whole number.
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At moment of time ,the incident wave of the phases of

the extreme vectors will comprise 2 with respect to the mean vector
since these vectors coincide (Fig. 3.4.1, e). in this case there will

also be mutual compensation of the vectors of the spectral components.

*A similar situation will also occur at moments of time tl+V
* t where k is any whole number, with the exception of zero.

Accordingly, at moments of time

t == t" --

where, as above, k is any whole number (except zero), the output volt-

age approaches zero due to the mutual compensation of its spectral 1
components.

There is only partial compensation of the spectral components of
the signal at all other intermediate moments of time. The quadrature

* components of the signal will be mutually be compensated for at any
moment of time. The latter indicates that the instantaneous frequency

of the output voltage is constant, i.e., this voltage has no angular
modulation. The uncompensated spectral components of the signal will

also form output voltage distinct from zero.

The vectors of the extreme frequencies change places (Fig. 3.4.1,

d) at moment = t. + 23 compared to the case of t73 Af (Fig. 3.4.1,

b). In this case two-thirds of the vectors will be located in the left
half-plane and the remaining ones will be located in the right half-

plane. The latter will be compensated by half the vectors located in
the left half-plane while the uncompensated vectors will form the total

output voltage vector. If its value is one-third as much and the di-

rection is opposite to that which occurred at t-+ , since a fewer

number of vectors participate in its formation which remained uncompen-

sated and they are located in the left rather than in the right half-

plane. One can thus explain the polarity and decrease (compared to the

case of tmo++),1 of the amplitude of output voltage by a factor of
2n -'I

ever-smaller (l/n-th) part of the spectral components of the forna moetiftms=o4
, hr ii aywoenme.A
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uncompensated for as n increases, due to which the amplitude of the

output signal also decreases by the indicated factor.

Thus, the nature of the output signal with complex amplitude

(3.3.3) is fully determined by the uniformity of the amplitude spectrum

of this signal and by the equality of the phases of its spectral com-

ponents at moment t = to. If this uniformity of the amplitude spectrum

or the cophasality (at t = to ) its components is violated in any way,

the shape of the output signal changes.

3.5. Practical Circuits of Optimum Filters

It was indicated above that a practical approximation of an opti-

mum filter for a linear frequency-modulated pulse is combination of the

ideal frequency filter with characteristic (3.3.8) and dispersion fil-

ter with characteristic (3.3.9) or (3.4.1).

It was initially suggested that a phase-compensating filter con-

sisting of series-connected bridge quadrapoles (Fig. 3.5.1) [66] be used

as the dispersion filter [65]. Their number is on the order of several

hundred (12]. Therefore, this filter is a very cumbersome and unrelia-

ble device complicated to regulate and operate.

Fig. 3.5.1. Phase-compensating filter.

It was then proposed that a diagram (Fig. 3.5.2) consisting of an

ordinary (nondispersion) delay line with (N - 2) uniformly arranged

leads, N frequency filters with bandpass of af/N and uniformly biased

resonance frequencies overlapping the frequency band from f0 - af/2 to

f0 + af/2 and an adder (67], be used as a dispersion filter. As follows

from section 3.4, N - . This diagram is used to compress linear
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frequency-modulated pulses of comparatively short length, on the order

of units of microseconds, and with high frequency deviation (on the 1.

order of tens and hundreds of megahertz).

7FP

Fig. 3.5.2. Block diagram of dispersion
filter on delay line with leads.

A dispersion ultrasonic delay line (DULZ; Dispersionnaya ul'tra-

zvukovaya liniya zaderzhki) [68-70] is usually employed for optimum fil-

tration of the most narrow band signals of greater length. It is an

ultrasonic waveguide in the form of a thin flat aluminum or steel plate
with electric to ultrasonic oscillation piezoconverters soldered to its
ends and vice versa (Fig. 3.5.3, a). Several types of oscillations--

longitudinal, transverse and so on--may propagate in this waveguide.

The first longitudinal type of these oscillations has dispersion, i.e,

the rate of their propagation in the waveguide is dependent on frequen-

cy [68, 70].

np iai i h c2)

i)

Fig. 3.5.3. Dispersion ultrasonic delay lines.
Key: (1) output converter; (2) direction of
propagation; (3) absorber; (4) longitudinal
motion; (5) input converter.

The typical dispersion characteristic of a DULZ operating with the
first longitudinal type of oscillations is shown in Fig. 3.5.4 and has
a linear segment in the frequency range (fl' f2). The median frequency
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of this segment is inversely proportional to the length d of the acous-

tic line: f0 = a/d, where for the usually employed acoustic line mater-

ials a = 2-2.2 MHz-mm. The width of this segment (along the axis of

delay time) is proportional to the length of the acoustic line 1: At3 -

= 61, where a = 1.5-3 us/cm. The width of the linear segment for fre-

quency LF = f2 - fl for a line with constant thickness comprises 10-14%

of the median frequency. As an example let us point out that a steel

tape 198 mm long, 12.7 mm wide and 0.076 mm thick is used in a typical

DULZ with f0 = 30 MHz, AF - 3 MHz and At3 - 33.3 us (68].

I I

A A f

Fig. 3.5.4. Dispersion characteristic of
ultrasonic dispersion delay line.

The disadvantage of the DULZ with constant thickness of the acous-

tic line is a comparatively small band AF of the linear segment of the

dispersion characteristic. Its broadening by increasing the median

frequency f0 requires a decrease of the acoustic line thickness, which

is fraught with great technological difficulties in manufacture (pro-

vision of the required tolerance in thickness, attachment of the trans-

ducers and so on) and also with an increase of signal attentuation in II"
the line.

The thickness of the DULZ acoustic line is varied intermittently

or smoothly in length (Fig. 3.5.3, b and c) to expand the frequency

band corresponding to the linear segment of the dispersion character-
istic (711. This DULZ is equivalent to series connection of several

lines, each of which has a constant thickness but different from other

lines. Because of this, the median frequencies of the linear segments

of the dispersion characteristics of these lines will be different.
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The dispersion characteristic of a line with variable thickness, equal

to the sum of the dispersion characteristics of the components of the

line, has a linear segment broad in frequency. Its width is AF = (0.3-

0.5) f0. In this case deviations from linearity are less than + 1.5%

on this segment.*

The compression coefficient of this DULZ cannot be more than 300-
500 due to the increase of nonlinearity of the dispersion characteris-

tic, which is determined by the inaccuracy of calculation and manufac-

ture of the line profile.

Dispersion filters based on parallel connection of two or more
DULZ that provide less compression, with heterodyning of individual
segments of the signal spectrum (Fig. 3.5.5), are used to achieve great-

er compression (721.

Fig. 3.5.5. Dispersion filter with two
ultrasonic dispersion delay lines and
heterodyning. (1) - DULZ

A linear frequency-modulated pulse with length ri, frequency devi-
ation Af and median frequency f0, acting on the input of this circuit, 11
is separated in frequency by filters F1 and F2 whose bandpasses are ar-

ranged from fo - Af/2.to fo and from f0 to f0 + Af/2, respectively. In
this case a linear frequency-modulated pulse with length T1/ 2, frequency

deviation Af/2 and median freqeqncy f0 - af/4 is formed at the output of
F1 . The pulse at the output of F2 differs only by the median frequency,

which is equal to fo + af/2 and by the additional delay by time T1/ 2.

Diffraction delay lines also have good dispersion characteristics [861.
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Since heterodyne frequencies r1 and F2 are equal to 4-F*--

and f--Ft- , respectively, and since only the difference frequencies
are separated at the output of mixers Cm1 and Cm2, the pulse spectra are

heterodyned to the band of the linear section of the DULZ dispersion

characteristic from F0 _L to F, -L. As a result of passing through
these DULZ, the pulses are compressed to length of 2/af, i.e., AfTl/4

times. They are then shifted in time by the delay line by T1/2 and are

fed to mixers Cm3 and Cm4 , controlled by the same heterodyne oscilla-

tions. The sum frequencies have already been separated at the output

of these mixers, due to which the initial spectra are restored and ran-
dom initial phases of heterodyne oscillations are eliminated. In this

case two compressed pulses of length 2/af and frequencies equal to

fo - af/4 and f0 + af/4, respectively, are formed.

Being added in the adder, these pulses form a double amplitude
pulse of one-half the length with the correct phase relations. The

phase relations between the added pulses required for this are achieved

by slight tuning of the frequency of one of the heterodynes. It is

easy to make thellatter automatic. Use of this FAPCh (automatic phase
frequency control) considerably increases the operating stability of
the circuit.

To achieve a very large compression coefficient D of a linear fre- i!
quency-modulated pulse using DULZ that permit pulses to be compressed

only Dl times, one should use N parallel channels and

A compression coefficient up to 105 can be achieved in this cir-

cuit [72].

Besides the passive methods of optimum processing of LChM pulses
considered above, the active method using a multichannel correlator,
which is a circuit with a mixer controlled by a long LChM heterodyne

pulse and with separation of signals at the mixer output, distinguished
by time position using frequency filters [731. The disadvantage of this

circuit, caused by its multichannel nature, includes the complexity and
cumbersomeness of the apparatus.
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3.6. Attenuation of Side Pips of the Output Pulse

The signal envelope at the output of an optimum filter (Fig. 3.3.1)
has, along with a large main (central) pip, other weaker, but still

sufficiently intensive side pips. This is the consequence of the
square-wave nature of the amplitude spectrum of the output signal (see

section 3.4).

To improve the shape of the envelope of this signal by attenuation
of its side pips, one can use a filter with smooth but sharply decreas-

4 ing amplitude-frequency characteristic instead of an ideal filter. An
example of this characteristic may be a bell-shaped characteristic:

K( ()=e-

where
0,0351

and AF is the filter bandpass at the 1//2 level.

As a result of passage by FM signal (3.2.2) through a device with
quadratic phase-frequency characteristic (3.3.9) and bell filter, the 12
signal will have the spectrum

I -.. + ,
e I () = e 1 0' -' V, X

'4/2 / [ft-)uV+ ;jin

X Ie dy

and the instantaneous value
= V, 

"

as= M exp _£(._.. .+ j [O.(_ i .) +

T+('"' ij- .] d.. 5 expIj[(hI--.),+ ,- - . .,j9

Changing the order of integration and carrying out the calculations, we

find

s () 0,754Vln)b{[ V (I - j454n ' (t-,)]+
+' -T(,J,,n', (t -t)]} X

X eip 7,14na, (y - t.).+1[2.,. (,-,.)+ -tl -,.]

where n - AF/Af is the ratio of the filter bandpass to frequency
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deviation, P(z) is the probability integral of the complex variable

'[251 and
c = 2,27!12+jD-1 =2,27&,

since D is on the order of hundreds and n is on the order of 0.5.

Accordingly, the signal at the output has the complex amplitude

7,WO: ,754VnJ/DM j- 2,67nAf (t - Q)]

+* [,.,,'+i2'67n,,- (,tj']. exp f-7,140,611 (t

which at t = to assumes the maximum value 12.

V3U8ZaC= 1,508n V 58)V.

The expression for the complex amplitude of the output signal is
easily converted to the form

Vw (t)= i,58Vn b (I - Re few (z)]} e
- '

where

z = 267a,1 (10.588

w(z)=e( + _t - e" di)

is the tabulated function of the complex independent variable [741.

N,

'48 44'

J --

Fig. 3.6.1. Time variation of complex amplitude
of output pulse.
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Consideration of the shape of the output signal envelope (Fig.

3.6.1) shows that the level of side pips decreases appreciably as the 122

bandpass of the bell filter is constricted. Thus, the relative value

of the first side pip decreases more than one-half even at n = 0.6 com-

pared to the pulse at the output of an optimum filter (which essential-

ly coincides with a pulse at n = -). At n - 0.4 the value of the first

side pip decreases by a factor of 38 and that of the second (which is

greater than the first in this case) decreases by a factor of 5.8.

Attenuation of the side pips is accompanied by an increase of the
length of the main pip. However, this increase is comparatively small

and comprises 8 and 76%, respectively, in the cases indicated above

(at a pulse length readout level equal to 1//2-).

Moreover, Constriction of the filter bandpass also leads to varia-

tion of both t., peak signal value and the noise at the output and ac-

cordingly to variation of the signal/noise ratio.

Since the output noise has output

2(2

then the following signal/noise ratio is observed at the output

q3 3"e 1,065n 16 0

Accordingly, the power loss in the signal/noise ratio compared to

an optimum filter comprises

G 0,o4697 (3.6.1)

The minimum value of this loss is observed at n = 0.62 and is

equal to only 12%. If the filter bandpass varies from 0.38 Af to 0.96
Af, the value of this loss does not exceed 30% (Fig. 3.6.2).

Thus, replacement of an ideal filter with a bell filter having

bandpass on the order of (0.4-0.5) Af permits one to considerably re- 12

duce the level of the side pips with comparatively slight expansion of

the main pip and essentially indiscernible decrease of signal/noise

ratio. 111
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Fig. 3.6.2. Dependence of loss on ratio of
filter bandpass to frequency deviation.

Greater attenuation of the side pips of the output signal can be
achieved by means of special weight processing. It is based on the use
of results obtained when solving a similar problem of greater attenua-
tion of the side lobes of the antenna radiation pattern with minimum

expansion of the main lobe by the Dolf-Chebyshev method [67, 75].
Specifically, truncated pulse bandpass (3.3.2) yields very good results
through a filter with the transfer function

R(e) = ±oo) c (3.6.2)

kw-A
where N is a whole number that determines the accuracy of approximation
of the best Dolf-Chebyshev filter to the given filter (the accuracy of 12
approximation increases with an increase);

0,5 (-t +

at k - 1-N (the product fJ" does not contain any term with n - ;
II I , 1

A-- arch ;

and Y is the ratio of the value of the first side lobe, which is the
largest of the side lobes, to the value of the main pip.
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Since the transfer function &Ie - is realized by combining a device

with transfer coefficient Uk and a delay device by time k/Af, then if

the median signal frequency f0 is a multiple of frequency deviation Af,
weight processing (3.6.2) is accomplished by a system of a delay device

by time 2N/Af with 2N - 1 uniformly arranged leads and an adder with

weights Uk of the voltages taken from these leads and also from the in-

put and output of the delay device (Fig. 3.6.3).

12

-N -(N-V1 N I

Fig. 3.6.3. Block diagram of weight processing
device.

The pulse achieved as a result of this weight processing has the 124

following length at the 1//- level

rcI+ h- + I ~ ~~

The mechanism of weight processing of a truncated signal is illus- 126

trated by the time diagrams shown in Fig. 3.6.4, a, where the simplest

case is taken: N = 1 and Ul - 0.4. The shape of the output pulse

achieved as a result of quasi-optimum weight processing by law (3.6.2)

at y = 0.01 and N = 5 is shown in Fig. 3.6.4, b.

Weight processing of a pulse shortened in an optimum filter wor-
sens the signal/noise ratio. However, this deterioration is compara-
tively small and at y > 0.01 does not exceed 30% of power [631. The
weight processing device should be made from sufficiently stable com-

ponents and requires very careful adjustment.

More detailed methods of side pip attenuation are considered in
[76].
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Fig. 3.6.4. Time variation of complex signal ampli-
tudes during weight processing

i 3.7. Phase Distortions of Signal and Compensation of Their Even 121
Components

The effect of both determined and random phase and amplitude dis-
tortions of the signal on the nature of the signal at the optimum fil-
ter output was considered in detail in section 2.4. This consideration
was carried out in general form and therefore its results are also
valid in the case of an LChM signal [77-80]. It is important only to
note that in this case the signal is very wideband and therefore the
difference of the phase variations of its extreme spectral components
during the pulse duration comprises a very large value--2wafT1 - 2wD.
Phase distortions of no more than 1/2 rad are permissible, which cor-
respond to a relative error of no more than I/4wD. This is a very
rigid requirement and one very difficult to fulfill.

With regard to the extremely harmful effect of phase distortions,
let us consider one of the systems of [811 (Fig. 3.7.1) in which even
phase distortions are compensated.
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Optimum filtration of a wideband radio signal can be regarded as

compensation of phase predistortions intentionally introduced into the
signal during its shaping. Let a signal be shaped by feeding a single

(practically rather short) pulse to the input of a dispersion filter 127
(DF; dispersionnyy fil'tr) with transfer function

A' ()---K exP ( at , < < ,. (3.7.1)
X(H)--0 on other frequencies

where K0 is a constant and j(w) is the nonlinear phase-frequency char-

acteristic. It can differ somewhat from the quadratic characteristic

(3.3.9). Since a single pulse is the sum of an infinitely large number
of harmonic components of any frequencies, then all the harmonic com-

ponents lying in its bandpass are fed to the filter output. But they

are fed with delay by time

which, in view of the nonlinearity of (w), is different for different

frequencies. Therefore, the voltage at the filter output will have a

frequency whose value is different for different moments of time, i.e.,

it will be modulated in frequency and accordingly in phase. Specifical-

ly, if the phase-frequency characteristic is quadratic [see (3.3.9)]

and if the dispersion frequency is linear [see (3.4.1)], the output
voltage frequency will vary by linear law.

Fig. 3.7.1. System for generation and optimum filtra-
tion of frequency-modulated signal (GEI--single pulse
gonerator; AP--antenna switch; 1--transmission; 2--
reception.
Key: (1) to display.

The process of angular modulation being formed during shaping of

the signal can be interpreted as inversion of the phase of the harmonic 12E

frequency component w by angle *(M).
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Let us feed the signal shaped in this manner to mixer Cml con-

trolled by heterodyne oscillation r1

v3(t) = cos ( + a).

The following component will be formed at its output from the

harmonic frequency component w

:V4 (t) = V4Cos[(CO+(0s)ft+Qa+*(o))].

* After the corresponding amplification, the signal is emitted in the

form of the sum of these components (where wl < w < w2) as a probing

signal, is reflected from the target (which we shall assume is fixed to

simplify the analysis) and is fed to the input of the receiver, where

it is amplified and fed to mixer Cm2, controlled by heterodyne oscilla-

tion r2 :

V5 (t) = Vscos (Wt +).

If the time delay and phase variation of the reflected signal are dis-

regarded, the signal component considered above will create the follow-

ing oscillation at the output of this mixer

. (t) = 2V. co f(. + + (,i)+a] cos (ot + {) =
C V.(- - - ) t - (0) - + 01 +

Unlike the first mixer, a difference frequency is generated in the

second mixer and the heterodyne frequencies are selected no that

w5 - w3 = 2w0, where

2

is the median frequency of the probing signal (and of the filter).

Then

t, (t) = V. cos [(2m,-.. t -+ ()-

Having fed this oscillation to a filter with transfer function

(3.7.1), we find at its output at wI < w < w2

%(f) = k V, r,- f/2,,, - w) t -5 ' (a) + €, (2s, - w) - a + P1.

In view of the linearity of the considered system, consisting of a fil- 12.

ter, frequency mixers and amplifiers, all the harmonic components pass
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quite independently through the output. Their sum is also the output

signal.

According to (1.5.3), this signal will be processed in an optimum

manner provided that the phase shifts are compensated when

where y and to are the constant phase shift and signal delay,

respectively.

Since the linear and constant terms of the phase-frequency charac-

teristic in this equation can always be compensated for by appropriate

selection of the constants, let us rewrite it in the following form:

(2-, - -) = , (-) at w, <(a -,<'4
or 0(0 + C2) at w, . w (3.7.2)

where i1l(w) is the phase-frequency characteristic of the filter with

eliminated linear and constant terms.

It follows from the latter equation that the effect of phase dis-

tortions is absence if phase-frequency characteristic (3.7.2) of the

shaping and processing filters is even with respect to the median

frequency.

In the special case of linear frequency modul Ation vSth is formed

if the phase-frequency characteristic of 'he sha, .rg filter has the

form of (3.3.9), i.e.,

21w

and condition (3.7.2) of the absence of phase distortions is fulfilled.

If the harmonic component is superimposed on the quadratic phase-

frequency characteristic of the filter

where c and T are constants, then the phase distortions will be com-

pensated according to (3.7.2) provided that
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fi (2m. -) - c (®) C sin (2w. w- ) T + ' -
-c sin (wT + a) 2c cos (a.T + a) sin (to. - (o) T =0,

hence it follows that where k is any whole number. 130

Accordingly, any even distortions of the phase-frequency charac-
teristic and specifically distortions of typet Ai~,(s)=cgcos r..Tj at e<,

where ci and Ti may assume any values, are completely compensated for
in the considered system.

One can arrive at similar results by considering the problem of
compensation of phase distortion by the time method. Using the steady
phase method (9, 82], one can show that the shaping filter with trans-
fer function (3.7.1) is optimum for a signal reflected from a fixed
target and subject to double frequency conversion only in the case
when a signal whose phase modulation law is even with respect to the

moment of time corresponding to the middle of the signal pulse and
accordingly the frequency modulation law is odd, is formed during
shaping.

In other words, ev-n distortions of the signal phase-modulation
law (and odd distortions of the signal frequency-modulation law) are
totally mutally compensated during shaping of it and processing in the
considered system.

Thus, the main task in designing a signal shaping and processing
system is not to eliminate phase distortions but to eliminate their odd
components, which can be done rather simply.

3.8. Effect of Detuning Linear Frequency-Modulated Signal on Output
Signal

If, unlike the case considered in section 3.3, a signal mixed in

frequency by the value a - 2wF is fed to the input of an optimum filter

V,(t)=V'c08n[(w.+o)t+"t8I] attl"
0(1)0 at other values of t.f
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then, having made similar transformations, we find at It-oI< 1  13.

where

sin Is [A' (t- to) + "] (I- is
v (t) = V, VD it jar (t - t.) + Fil, (3.8.1)

This amplitude reaches a maximum at moment of time tm (Fig. 3.8.1) in
in which the denominator of the latter expression approaches zero, i.e.,

= to- X7,,. (3.8.2)

This expression can also be found directly from formula (3.4.1) if

= w0 + 21rF is substituted into it.

The maximum amplitude of the output signal is

VM,= V,(t.)---V,]YT) 0 -D 1f) at IFl<At (3.8.3)

and is reduced by linear law with an increase of the absolute value of

detuning to Af. At IF > Af, the output signal is approximately equal
to zero. This is explained by the fact that the main part of the input

signal spectrum is located outside the bandpass of the optimum filter.

If the input linear frequency-modulated signal is detuned with
respect to the median frequency, the optimum filter shifts the spec-

trum of this signal with respect to the filter bandpass, which causes
constriction of the output signal spectrum. If the output signal spec-

trum and the amplitude-frequency characteristic of the filter are re-
garded as square-wave, then the width of the signal spectrum at the
filter output comprises af - JFJ at IFI <Af.

This constriction of the output signal spectrum also causes both

the decrease of the maximum output signal indicated above and expansion

of its length* (Fig. 3.8.1).

In order that frequency detuning not cause an increase in the length
of the output pulse, linear frequency modulation is replaced by loga-
rithmic phase modulation [721.
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Fig. 3.8.1. Effect of detuning on shape and position
Aof output pulse.

Th Using (3.8.1), it is easy to show that the length w2 of the output
signal (at the 0.637 level) satisfies the quadratic equation

• + (,1 - -),- . = 0,

solution of which has the form

With comparatively slight detuning when the following condition is
I fulfilled

I FI<(1 -2D - '")Af,

formula (3.8.4) is simplified:

This expression is also easily found directly from the width of the
output signal spectrum.

Calculations show that formula (3.8.5) yields an error of 3.3,
when D=IO0 and

5.9, 9.3 and 17.2%, respectivelyAat relative detuning [Ff/ f equal to

0.5, 0.6, 0.7 and 0.8, respectively.

If frequency detuning is caused by the Doppler effect: 13.

F- Fun2vp

where X0 is the mean wave length and yr is the radio velocity, then

since the velocity and consequently the Doppler shift of frequency are
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previously unknown, according to (3.8.2), the so-called velocity error

of determining the delay time of the.reflected signal appears
At F 2-.

which leads to the range measurement error

The target covers this range segment during the time

Accordingly, a range finder with linear frequency-modulated signal
measures the range to the target at the following moment of time rather
than the moment to, of the end of irradiation of the target by the

signal pulse

tua u to + Vttoa - j-- (3.8.6)

Thus, the extent of the time shift of the moment of range measure-
ment is determined only by the parameters of the range finder and is
totally independent of the speed of the target. Therefore, motion of
the target does not lead to any error in determination of the target

[10, 83].

3.9. Achieving High Accuracy and Resolution in Range and Speed

To estimate the accuracy and resolution of a system in range and
speed, (i.e., the time position t and frequency F), the joint correla-

tion function of modulation of the signal being used in it is usually

analyzed (10-16, 32, 84, 85]

W(t,P- SV(x)?*(x-)eO""dxa 1

-,-- (2"1) SIN(V-l e JO dt,

where 3(w) is the frequency spectrum of the complex signal amplitude

Since S*(2f) is the transfer function of a filter optimum to the

signal 7(t), ![2w(f - P)] is the modulation spectrum of the signal
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shifted in frequency by F and their product is the spectrum of the

optimum filter response to the frequency-shifted signal, then the

joint correlation function, being a Fourier transform of this product,
is also the indicated response. This function is a generalization of

the concept of a correlation function for the case of two variables t

and F.
i

The normalized joint correlation function of modulation is usually
employed

'F,(tF) V (x)V- (x - t efla"z dx,

where

2 -- . 0 = I (x ) V - (x ) d x

is the signal energy.

This function shows the relative value of the optimum filter re-
sponse to a signal shifted in time by t and in frequency by F with re-
spect to a signal optimum to this filter. In other words, it charac-

terizes the degree of distinction of the filter responses to the two

signals indicated above.

In the case considered above, linear frequency modulation isi,'- tE

due to which after calculations we find

The range of values of variables t and F in which . Fr' I is 13:

naturally called the range of high correlation of signals. Two signals

mutually shifted in time by t and in frequency by F, which correspond

in the plane of variables t, F to points lying within this region,

cannot be separately identified.

Since accurate measurement of the parameters of the received sig-

nal t and F within the range of high correlation is essentially
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impossible in the presence of noise, it is sometimes called the region

of ambiguity. The smaller this region, the higher the accuracy of
measuring the indicated parameters.

To eliminate the ambiguity of measuring the parameters, it is

necessary that the region of high correlation be unique. This require-
ment is essentially fulfilled in the case of a periodic or quasi-peri-

odic signal. Therefore, one must satisfy the requirements so that dif-
ferent regions of high correlation be sufficiently separated from each

other.

06

r0

-VSD -

Pig. 3.9.1. Region of high correlation
of linear frequency-modulated pulse.

A region of high correlation of signals with linear frequency-

modulation (Fig. 3.9.1) is strongly extended in the direction of
t 1.2

straight line F%=--D -- and has width on the order of -- and length

on the order of D. Its area is on the order of unity and is indepen-

dent of the compression coefficient. Consideration of this region
shows that the time (range) resolution is determined by the value 13(

1,2A=4T' (3.9.2)
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inversely proportional to frequency deviation and accordingly to the

width of the signal spectrum.

If there is no time shift between signals (t =0)

W. (0, F)(3.9.3)

The latter, like (3.9.1), has the form of function sin x/x' Since
(3.9.3) lies in the range of 0.5-1 at IFTlI < 0.6, the frequency (veloc-

ity) resolution of the system is then characterized by the value

AF- 1,2
'1w' (3.9.4)

inversely proportional to the length of the pulse signal.

These results, found for the special case, are rather general and

are qualitatively valid for signals of different shape as well.

Let us explain the latter result physically. The capability of a
system to distinguish two signals in freguency is determined by the

time of analyzing these signals, which cannot be greater than their
length. The greater the length of the signals being analyzed, the
greater the difference their output effects is in the form of a differ-
ent incident wave of phases. Therefore, the frequency resolution is
determined by the length of the signals being used.

Having assumed in (3.9.1) that Af - 0, we find the modulus of nor-
malized correlation function of an unmodulated pulse of length T:

11. 01 F silk a F-c( _ 3 9 5

At t - 0 we again find (3.9.3), hence it follows that the frequency

resolution is characterized by the value of (3.9.4). At F - 0, we find

the correlation function of the envelope of this signal

which is a triangular function. Therefore, the time resolution 137

comprises
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(3.9.6)

Since the width of the signal spectrum under consideration has the

order l/T, it is easy to conclude that (3.9.2) and (3.9.6) are special
cases of a more general formula

it ' "(3.9.7)

which is in complete agreement with the physical concepts outlined at

the end of section 3.1. Comparing the region of high correlation of
an unmodulated pulse (Fig. 3.9.2) to a similar region for a linear fre-

quency-modulated pulse (Fig. 3.9.1), we note that the latter is strong-

ly lengthened and rotated counterclockwise by an angle whose cotangent
is equal to the compression coefficient. Its area also has an order of
unity.

r

•0 t

Fig. 3.9.2. Region of high correla-
tion of unmodulated pulse.

To achieve high range and velocity resolution, one must use the

shapes of signals whose normalized joint correlation function of modu=
lation meets two requirements: 1) it is close to unity only in the

small vicinity of point t = F - 0 and 2) the modulus of this function 138
is considerably less than unity in all other regions of the plane t, F.

Unfortunately, it is impossible to achieve simultaneous concentra-

tion of the region of hiq;h correlation in the infinitely small vicinity

of the origin and to achieve equality of the joint correlation function
to zero in all other regions of the plane t, F. The fact is that this

function satisfies the condition (16, 32, 85]
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SdFJ I'.(,Fj'dt=J,(39)

which describes the so-called principle of ambiguity in radar. It

means that any constriction of the central region of high correlation

inevitably leads to an increase in the values of the joint correlation

function in other regions and may even cause the appearance of new re-

gions of high correlation. The latter may be the cause for ambiguityi in measurement of signal parameters.

The joint correlation function of the noise signal meets the re-

quirements indicated above. But use of it is related to great diffi-

culties when accomplishing 
optimum filtration.

Attempts to select a satisfactory shape of a signal resulted in

some success. Three types of signals that meet to a considerable de-

gree the requirements indicated above are also considered in the

following chapter.
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CHAPTER 4 J.:

OPTIMUM FILTERS FOR PHASE-MANIPULATED SIGNALS

4.1. Signals Manipulated in Phase According to Barker's Code

1. The concept of Barker's Code. Properties of Signals

Two signals having identical output and differing only in phase by

T have the maximum possible degree of difference. The mutual correla-

tion function in the absence of a time shift is equal to -1. Therefore,

it is the use of these signals in transmission of digital messages (for

example, in telegraphy, which is called phase in this case) that pro-

vides the highest noise stability [22, 24].

Let us take N pulse signals of length To and amplitude V, which
differ from each other in time shift by a value multiple of length and

may differ in initial phase by . Let us form from these elementary

pulsed signals the phase-manipulated signal (Fig. 4.1.1):

V=VcCu|.t+6(t) at O<t<N.= %,
V=0 at t<0 Ht>,V'C., (4.1.1)

where 0(t)-6jewonst at (i-l)-r0<t<jroand i - 1-N and 0j is equal to either 140
zero or was a function of the code being used. It is assumed here and

further that w0To is a multiple of 2r. Having denoted coso*-dt,

let us rewrite (4.1.1) as follows

v- Vdtcosojt at (i-I)Tn<t<i-r.

where i - 1-N and di is equal to either +1 or -1.
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,tO J-O r, D a.,-V J ,O

Fig. 4.1.1. Phase-manipulated signal consisting of elementary

pulsed signals with four of the indicated initial phases.

v.(t)

_ _ _ _ 140

Fig. 4.1.2. Time diagram that explains calculation of corre-
lation function.

The normalized complex envelope of this signal can be represented
in the form of the following sum:

V.o (W = di (I! It - (i - 1),t '=- I (t -/j). ( 4.1l.2 )

The normalized correlation function of the complex envelope with
a time shift of t = kT0 + e, where k is a whole negative number and
0 < e < To, is equal to (Fig. 4.1.2)

,_0
__M (4.1.3)

-J - ±)ddj+a+ -L dd+k+j

Specifically, with a time shift multiple of the length of the elemen-

tary pulse T0,

N-A

(kc,) 'E dj.,. (4.1.4)j=1

In the absence of a time shift +0(0)=7Ed/u2, with a time shift of 141
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iV-- VI,'-~) !V-ddy. and with positive value of m, beginning at

zero, and with any positive value of e

Let us select the seauence {di}, where i = 1-N such that the11
normalized autocorrelation function lies within the range from -1 to +1

at values of the independent variable whose absolute value is greater
than the length of the elementary pulse TO:

t < at I .

Since di can assume values of only +t 1, then as follows from

(4.1.4), with even value of N, the following conditions should be

fulfilled for this

IV-2 dNmdd+ 0 at mn= 1, 2 ..... I
i=J

__ 2• - -,,. 1 -iam=i..4. ( 4.1.5 )

j=i

In like fashion with odd value of N

N-2m

dd+, --1 at 'I,2'.... N-I
i=2 (4.1.6)

,V-3
d1d +m =O at m -0, 1 - 3

One of the unknown values of di can be selected arbitrarily, hav-
ing assumed, for example, that dl = +1. Then each of systems (4.1.5)

and (4.1.6) consists of a (N - l)-th equation with (N - l)-th unknown.

It follows from (4.1.5) and (4.1.6) that expression (4.1.3) can 142

be simplified. Thus, at k - 0 and with odd value of N

T0 u d1=N,

due to which

and with even value of N due to the fact that didi+. =_. 1.
I12
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N-I d

At 1 < k < N - 1 in the case of an even value of N - k

N-k V-k-I

5,dj~H- ± jj~,, 1,

hence it follows

. %%

In the case of an odd value of N - k we have

- dd+=+- I ii d4j+j+i= 0,
ii=I

due to which

(kc.+ ( -L) signd2-.) ig

With negative time shifts it is easy to determine the correlation

function by using its property of evenness.

At N = 2 system (4.1.5) is the equation dld 2 = + 1. Besides the

two trivial solutions d i = d 2 = 1 and dI = d 2 = -1, there are two other

solutions: dl +1; d2 = -1 and dl = -1; d2 = +1. This system has

eight solutions at N = 4 (Table 4.1.1).

Table 4.1.1

Index of d d.Solution 1 . , d

4 +1 +1 -I +1

b +i - +1 +1
c -I -i +1 -I
d -1 +1 -1 -t
e +1 +1 +1 -

f -i +1 +1 +1

9 -I - -I +1
h +1 -t -, -t
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It is easy to note that solutions b, d, f and h are mirror images

of solutions a, c, e and g, respectively (i.e., the sequences that show

them differ from each other by inverse order of succession of terms),

while solutions c, d, g and h were found from solutions a, b, e and f,

respectively, by multiplying each term of the sequence by -1. There-

fore, only a and e are independent solutions. Comparison of their cor-

relation functions (Fig. 4.1.3, a and b) shows that code a is somewhat

better. Solutions of system (4.1.5) do not exist at other even values

of N.

Solutions of system (4.1.6) exist only at N i 3, 5, 7, 11 and 13

with odd value of N (Table 4.1.2).

Table 4.1.2.

N "t

IdI do d3I d.I df do I d e d j ol d ia s

3 +1 +1 -1I0 0 0 0 0 0 0 0 0 0
5 +1 -i +I -I +1 0 0 0 0 o 0 0
7 +,I+,I+, -L-f1-1 0 0 0 0 a a

11 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 0 0

The correlation function of signals at N f 7, 11 and 13 were plot- 14

ted in Fig. 4.1.3, c, d, and e, respectively. It is interesting to

note that they are negative everywhere at N = 5 and 13, whereas they

are negative at N = 3, 7 and 11 with the exception of segment -To < t <
< TO.

The sequences {di} at N = 3, 7 and 11 were first suggested by

Barker [88]. Because of this, the sequences that satisfy conditions

(4.1.5) and (4.1.6) are called Barker codes.

Investigations (89, 90] and others showed that Barker codes unfor-
tunately do not exist at N > 13. Because of this, it is impossible to

find the excess of the main maximum modulus of the correlation function

over simple maximums more than 13-fold with optimum filtration. In

other words, when using a signal manipulated in phase according to

Barker's code, the main maximum voltage at the output of an optimum
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Fig. 4.1.3. Correlation function of Barker sequences.

filter is accompanied by collateral maximums whose relative value can- 145

not be made less than 1/13.*

The considered correlation function is a cross-section of the
joint correlation function of modulation at F - 0. The other

The relative value of the side maximums can be reduced below 1/N by
using special weight processing of the signal after optimum filtration
[15]. However, weight processing is related to complication of the
circuit and leads to some (although small) losses in the signal/noise
ratio and broadening of the main pip.
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cross-section of this function (plane t = 0) is

'+
7. (0, F) N I f V. (x) '% (x) eJ2xFx dx,

which leads to the equality

101 (F) I FN-,. I -(4.1.7)

This expression coincides with (3.9.3) since T1 = NT0 . Generally,
formula (3.9.3) is valid for any signal with constant amplitude during
its entire duration. As can be seen from Fig. 3.3.1, collateral maxi-
mum functions (3.3.3) or (3.9.3) are less than the main maximum by
approximately a factor of 5.

Calculation of the autocorrelation function of a phase-manipulated 146
signal by a rather complicated law is a laborious and exhausting pro-cedure if a digital computer is not used for this purpose. It can be

simplified considerably by using the following method. Let us first
note that, according to (4.1.3), the correlation function of a signal
comprised of elementary pulses of identical length is a linear broken
line whose break point corresponds to time shifts that are a multiple
of length To. Therefore, calculation of the correlation function
reduces to determination of its values at these discrete points. The
latter is easily done by using a diamnd-shaped table (see Table 4.1.3) cm-
structed for a Barker sequence at N = 7). We write the considered
sequence from bottom to top in the form of a vertical column on the
left side of this table. If there is a plus in the top row, we rewrite
this sequence unchanged in the horizontal row and if there is a minus
at the indicated point, we change the signs of all its elements.

Table 4.1.3.

- + +- +

+ . . .-- +.--.

+ ** + + -- + -
+ +- + +- + -

-I, O. -I. 0, -I, 0, +7 O, 0.-1. 0. -1. 0, -1
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In other words, we write the sequence in the top row whose

elements are a product of the corresponding element of the initial

sequence for its last element (it is written in the top row of the

vertical column). We write with one shift to the right a similar
sequence of products of the elements of the initial sequence by its

next to last element (it is written in the second row of the vertical 147
column). We repeat this operation as many times as there are elements

in the sequence. Having added the elements of each vertical column of

the fonrad diammrd-shaped table we determine the values of the autocorrela-

tion function of this sequence at discrete points (they are written

below the table). Having plotted these values on the graph and having

connected adjacent values with straight-line seqmente, we find theiautocorrelation function of the sequence which differs from the nor-
malized autocorrelation function (Figure 4.1.3, c) only by the scale

along the y-axis. The outlined method is essentially matrix representa-

tion of relation (4.1.4).

2It,, 1 1 I

42 0.4 0.6 43

Fig. 4.1. 4 . Amplitude spectra of Barker sequences.

Making use of the fact that the autocorrelation function of the

signal whose phase is manipulated by Barker's law, it is known that its

amplitude spectrum can be easily determined [91). Actually, the energy

spectrum of the signal is related to its autocorrelation function by

the Fourier transform:

F(s) -4 + (s) cotad,.

On the other hand, the energy spectrum is equal to double the square of
the amplitude spectrum (271:
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Therefore, the signal amplitude spectrum is

In the given case the unnormalized autocorrelation function (see
Fig. 4.1.3) of a Barker sequence with odd values of N (which are only
of practical interest) consists of N symmetrical triangular pulses of
length 2T0 shifted with respect to each other by a time which is a
multiple of 2T0 and accordingly having complex amplitudes NVJT 0

(central ejection) and +V 0 (side ejections), and the positive sign 14:

corresponds to N = 5 and 13 while the negative sign corresponds to
N = 3, 7 and 11.

Since a triangular symmetrical pulse (with respect to t = 0) of
amplitude UH and length T has spectral density [27]

go (,., URP ts) W u,4-.-z" \t -cs-
_COS -)

then the spectral density of the autocorrelation function of a Barker
sequence is

31 (0) = S. (a , v2-0, 2co) x
e-I

2 k
-2

-I + --+ e- i 2k

2/

2V'r(I -Coss%) N-.-2 Cos 2kai..

Accordingly, the considered sequence has the energy spectrum 14,
(positive frequencies)

F (w) - 31 (w) +f (--1 -23, ((a).

Making use of formula (1.342.2) of [92] and making the elementary
transformations, we find

-- w%/ sin / J"

Then according to (4.1.8) the amplitude spectrum of a Barker

sequence is .. . I nI (*-*/2) I " [sin No% /

Here as above, a positive sign in front of the parentheses occurs
at N - 5 and 13 and a negative sign occurs at N - 3, 7 and 11.
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Thus, the amplitude spectrum of a Barker sequence is the product

of the amplitude spectrum of one of the pulsed signals which comprises

this sequence and of the function (shape complexity factor)

I) [ n we Is

The latter is periodic with respect to w having period W/T0.

Consideration of the amplitude spectra of the two Barker sequences

at N = 11 and 13 (Fig. 4.1.4) shows that they essentially coincide,

with the exception of the very low-frequency region and the vicinity

of frequency i/to. This difference of spectra is explained by the

difference in the structure of Barker codes at the indicated values of N.

2. Signal Production. The Optimum Filter

A signal manipulated in phase by r according to the law of Barker's

code can be found rather simply. A balanced modulator powered from a 15C

high-frequency generator and modulated by sequence of coded pulses can

be used for this.

rag 9. (2)

_ +€ +

L AAAAAAAA iAAAAA AAA _ -,

Fig. 4.1.5. Block diagram of FM signal
generator at N - 7 (a) and time diagrams
of voltages (b).
Key: (1) single video phase generator;(2) high-frequency generator: (3) balanced

modulator.

The sequence of encoded pulses can be shaped by algebraic suma-

tion of the pulses taken from the leads of the delay line with total136



length (N - l)T0 to whose input a square-wave pulse of length TD is fed.
The delay line has a total of N - 2 leads, ensuring a delay by a value

that is a multiple of To. The pulses taken from the beginning of the
line, from all the leads and from the end of the line are added in the
adder with weights corresponding to the values of the terms di of the
Barker code. The sequence of encoded pulses is thus shaped as a result

of this summation (Fig. 4.1.5).

The pulse being fed to the input of the delay line can be produced

either by means of an ordinary pulse circuit or by excitation of an

optimum filter with a very short pulse for a video pulse of length To. 15

V

Fi. .16.F siga tN=3() lc

AA AAA AAA

diagrams of its generator (b) and optimum

filter (c) and time diagrams of voltages
(d, e and f).
Key: (1) a? optimum filter for single
pulsed signal.

If a radio pulse of frequency w0 and length to, formed upon excita-

tion of an optimum filter for the signal by a delta-pulse, is fed to the
input of the delay line, then an FM encoded signal will be formed at the
output of the adder (Fig. 4.1.6, a). Accordingly, the pulse characteris-
tic of this system (Fig. 4.1.6, b) coincides with this signal. And as
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shown in §1.3, the pulse characteristic differs from the function that

represents the signal, mainly by the sign of the independent time

variable. Therefore, if the input and output change places in the 15

signal generation device (Fig. 4.1.6, b), i.e., if the direction of the

signal is changed, then we find an optimum filter for the given signal

(Fig. 4.1.6, c).

If a signal optimum to the filter is fed to its input (Fig. 4.1.6, d),

a voltage is formed at its output that reproduces with some time shift 15:

the autocorrelation function of this signal (Fig. 4.1.6, e). A voltage

(Fig. 4.1.6, f), which represents the modulus of the correlation function

of the complex envelope of this signal in some scale and with some time

shift, is formed as a result of its amplitude detection.

+ 71 O

+C

nt

"--'= u --""" ---
L

rlrl

Fig. 4.1.7. Block diagram of optimum filter
at N - 7 (a) and time diagrams of voltages (b).
Key, (1) RF optimum filter for single pulsed
signal.
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If two signals overlapping in time, but separated by a time greater

than To are fed to the input of the optimum filter, they form an output
voltage with two separate main maximum values (Fig. 4.1.7), which also
permit one to determine the time position of each of the signals.

Accordingly, the system resolves these signals in time (by range).

Since Barker codes do not exist at N > 13, systems with signals
manipulated by these codes have limited capabilities with respect to

increasing the range resolution while retaining the same effective
range and increasing the effective range while retaining the range

resolution.

4.2. Signals Manipulated in Phase by Binary Pseudorandom
Sequence

1. Concept of Binary Pseudorandom Sequence and Its Properties

When searching for the best signal shape, attention was turned
toward signals manipulated in phase by w by so-called linear recursion

sequences" or "linear sequences of a shift register of maximum length"
[15, 93-971, which were suggested when working out problems of coding

in general message transmission theory.

These sequences are a set of N periodically repeated signals di,
each of which can occupy one of two values: +1 or -1. This value is
determined by the product of the values of two or more previous symbols

(but always odd) taken with opposite sign: 154

d- djnj, ... d jd , (4.2-.1)
even number of 4actors

where n > m ... 1 > k > 1, while i = (n + 1)-N.

In the special case of two factors

di- -dj.d".. (4.2.2)

If we take for example d1 = d2 - ... - dn_ 1 = -1 and dn - +1, then an

unrepeated elementary sequence {di) of N symbols should be formed with

proper selection of numbers m, ..., 1 and k, where

N-2"-. (4.2.3)
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It should contain all combinations of n symbols of two elements -1 and

+1, except the combination consisting of only negative ones. As a

result, each sequence {d i, where i = 1-(2 - 1), contains 2 n- positive

ones and 2n-l - 1 negative ones. Therefore,
N

p' d1 -- . (4.2.4)
1-,

The symbols are repeated at i > N in the same order, i.e., at any

integer p

di+pjv=dj. (4.2.5)

The same sequence of symbols is also formed at t < 0. It is obvious

from (4.2.5) that the number N characterizes the period of an infinite

sequence. The infinite sequence formed in this manner is called a

binary pseudorandom sequence.

As an example let us first take the simplest case of n = 2:

d =--dj-_dj_. (4.2.6)

Then, if d1 = -1 and d2 = +1, then d3 = +1, d4 - -1, d5 = +1, d6 = +1,

d 7 = -1 and so on.

Accordingly, the desired sequence has the form: ... , -1, +1, +1,

-1, +1, +1, -1, +1, +1, ... It contains all possible combinations of

two symbols: -1 and +1, +1, +1 and +1, -1, except the "forbidden"

combination -1, -1. The elementary sequence -1, +1, +1 is repeated 155

every N = 22 - 1 = 3 symbols. It coincides with the Barker code at

N = 3.

Two rules of (4.2.2) are possible at n = 3:

di4t- di4 (4.2.7)

and

which accordingly lead to the following elementary sequences of

N - 23 - 1 = 7 symbols: -1, -1, +1, -1, +1, +1, +1 and -1, -1, +1, +1,

+1, -1, +1. The infinite sequences formed from these elementary
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sequences differ from each other only by the order of the identical
symbols, i.e., they are a mirror image of each other.

If n 4 and d i = -di-4:d:i3 then we find a sequence of
N = 24 - 1 = 15 symbols: -1, -1, -1, +1, -1, -1, +1, +1, -1, +1, -1,
+1, +1, +1, +1. According to the rule di = -didi-l, a "mirror"
sequence is formed: -1, -1, -1, +l +1, +1, +1, -1, +1, -1, +1, +1, -1,
-1,+1

The number of elements of sequence N increases sharply as n increases,
essentially doubling with an increase of n by one (Table 4.2.1).

Table 4.2.1.

1 63 17 25 1 103 12

5 1 r27 111034 40952

Several numbers k, at which the considered sequence is formed by
rule (4.2.2), corresponds to almost every integer n. Some of these com-
binations of n and k are placed in Table 4.2.2. If any value of k other
than that indicated in this table is taken upon formation of a sequence
by rule (4.2.2), then a double sequence will be formed, but its period
will be less than (4.2.3).

Table 4.2.2.

_ 2 3 5 7 1 6 4 5 3

1 11 14 14 15 1 7 7 18

2 9 5 9. I 14 3 14 13 5

No such integers k exist at n - 8, 12, 13 and 16 at which the
considered sequence with maximum period N - n - 1 is formed by the
rule (4.2.2). A different combination (n, n - k), which forms a 156I sequence of the same period, being a mirror image of the first
sequence, corresponds to each combination (n, k), leading to a sequence
of maximum period.
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The latter is also valid for combinations of a different even

number of integers, for example, for combinations of four integers
(n, m, 1, k) (Table 4.2.3), which correspond to the rule

d = -dididid of formation of a considered sequence of maximum

period. The combinations (n, n - k, n - 1, n - m), which leads to
formation of a "mirror" sequence, corresponds to each such combination

(These combinations are arranged in Table 4.2.3 in a row, occupying 157

odd and even ordinal positions, respectively).

Table 4.2.3.

5 5 5 5 6 6 6 6 8 8

m 3 4 4 4 5 5 4 5 4 6
1 2 3 2 3 2 4 3 3 3 5

T 1 21 1 1 1 1 1 2 2 4

S 1 12 13 13 16 16 Ig 19

m 6 I! 4 12 5 15 5 18

1 4 8 3 10 3 13 2 17

k 1 6 1 9 1 14

The total number of different combinations (and accordingly of

sequences) for any value of n comprises

M =_'p (2"--1),

where W(x) is an Euler phi-function that determines the number of
positive integers which are less than the given positive integer x and
are relatively prime to x (98]. Those numbers which do not have common
divisors or multipliers with it are called numbers relatively prime to

the given number x. At n = 10 the number of types of sequences already

comprises 60 (Table 4.2.4).

A binary pseudorandom sequence has a number of very interesting

properties.

If an infinite sequence {d i j with period of N elements is shifted

by k elements (k # pN) to the right or left, then the sequence {di+k}
*is formed. Having multiplied the elements of the initial and shifted
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Table 4.2.4.

n 11 12 13 14 15 16 17 18 19

M 176 144 630 756 1800 2048 7710 7776 27594

sequences d and di+k and having changed the sign of their product,

we again find the same sequence shifted by a certain number of elements,

i.e., {-didi+k } = {di+m} , where m is distinct from k and pN.

Multiplying the elements of sequences (n = 2) as an example

.... --I + I,+ I,-I, + .... and
.. .'! -- , +'i 1 -I + 1 . .

we find 15E

or after changing signs

This sequence differs from the initial one by a shift by two elements

to the right.

Let us demonstrate the indicated property for a sequence plotted

according to rule (4.2.7). Based on this rule, equality (4.2.5) and

the obvious relation d? = 1, we have

- ddj., - di "

-dd, = - di (- de..+,) = d;_,
-- d,,dj = - (- d+,dj,+ ) d,+s = d+4,

- d =d+4 - - d, 4d,1 ) d*.+ =
--dr .= - 44_ . d,.

These equalities also prove the foregoing. The proof is similar

for other values of n.

Since the sequence (-didi+k } is totally equivalent to the sequence

(di} at k 0 pN, for which relation (4.2.4) is valid, then
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Xjd +&- - at k9& p'f. (4.2.8)

Moreover,
N N

i=1 =4

2. Correlation Function and Amplitude Spectrum of Sequence

Let us manipulate the high-frequency oscillation phase by r

according to the law of variation of the integers of the binary pseudo-

random sequence {d i}. This signal will then have a normalized complex 15,

amplitude

t(t) = di (I It - (i- J)"t.] - I (t - i,0)}4 2.0

This expression differs from (4.1.2) only by the infinite limits of th4k,

sum. By analogy with (4.1.3), the normalized correlatioF-"unction of

the complex amplitude of this signal with time shift t = kTO + e-has

the form

(k + T. (x) V0 (x - k-c. - a) dx=
dj j. (h +' djj= ~

Due to (4.2.8) and (4.2.9), we find

? (a 4 ).

and at 1 < k < N - 2

or otherwise *.()=1 I %( - tIl .
1 (4.2 .11)

. ( --- T at,,I<(-),.

Moreover,

f. ( +pN;)4.() (4.2.12)
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The correlation function (Fig. 4.2.1) has one maximum on the order
To wide for the period T = NT0 . Its absolute value is N times less than

the maximum for the greater part of the period of length (1 - -I)T.
Since the value of N can essentially be selected as large as desired, 16(
the correlation function of these signals may be found very close to

ideal.

fDue to the great affinity of this function to the correlation
function of noise, the sequence of two discrete symbols that formed

this signal is also called a binary pseudorandom sequence.

Fig. 4.2.1. Correlation Function of Binary Pseudo-
random Sequence.

The additional maximums of the joint correlation function 'Y0(t, F))

on plane t, F have a height on the order of 1., i.e., they can be made

sufficiently small [15, 32].

Let us consider the method of calculating the values of the auto-

correlation function of a binary pseudorandom sequence at discrete

points by means of a matrix table. Due to the periodicity of the given

sequence, this method differs somewhat from that outlined in item 1 of

14.1 for the case of an aperiodic sequence.

in the considered case according to the method outlined above, an
auxiliary diamond-shaped matrix table is first compiled for a singlej period of the sequence (see Table 4.2.5, constructed for a binary

pseudorandom sequence with N - 7). All the elements located to the 161
right of the small diagonal of this table are then rewritten in the same
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order from left to right on the same line to the left of the diamond-

shaped table so that a rectangular matrix table ig formed. By adding

the elements of its vertical columns, we find the values of the period

of the autocorrelation function of the sequence at discrete points.

Table 4.2.5.

. - ,- .
+: _ - + - + + +

": + + -- + + +- +-
+ + + . + . .

+ +

Let us consider the amplitude spectrum according to the autocorre-

lation function of the sequence [911.

Due to (4.2.12), the autocorrelation function of the sequence is

periodic and its spectrum, i.e., the energy spectrum of this sequence,

is linear (discrete).

Obviously, the amplitude of the k-th harmonic of the autocorrela-

tion function of the sequence is

M% 2V(N+I 4- 1)
A(2-) =- ' +(j) =c ( -) d- =~h s

N% is% 7v

0

while the constant component of this function is

A()= (1) dt =
0

Because of this, the constant component of a binary pseudorandom

sequence is

C(0)-IA (0)'I- .

and the amplitude of its k-th harmonic is
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If we consider the periodic sequence whose priod has the same 16:

length as the period of a binary pseudorandom sequence and which consists

of a single square-wave pulse of the same amplitude and length as the

pulses of the binary pseudorandom sequence, then using the results

presented in [27], it is easy to establish that this sequence has the

constant component

8(0) = V

and the amplitude of the k-th harmonic

B -- = sinm

It follows from pair comparison of the last four expressions that

encoding the square-wave pulses by the binary pseudorandom sequence law

does not change the constant component (which is explained by the

structure of this sequence), but increases the amplitudes of all the

harmonic components (N + 1)1/2, = 12n/21 times (Fig. 4.2.2).

0.?(0 2r/N# Z9

a)

g. b) 

i Fig. 4.2.2. Amplitude spectra of uncoded (a and c)

and binary pseudorandom (b and d) sequences.
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Signals manipulated in phase by binary pseudorandom sequences are
used in wideband communications systems [96]. The capabilities of
separating these signals are determined by their cross-correlation pro-
perties. Due to the pseudonoise nature of these sequences, one can 16.
expect that their different types have low cross-correlation. Actually,
any two different binary pseudorandom sequences with periods
T, = NIT 0 and T2 = N2T0, where N, and N2 are relatively prime numbers,
have a constant normalized cross-correlation function which is equal

to the value inverse to the product NIN 2 :

'ro (') = . f. I',, (t) r,, (U + c) dt = N| at any

where To is the length of the elementary pulse of these sequences,

N = 2nl - 1 and N = 2ns2 - 1 are the numbers of the elements in a
single period of sequences, nj and n2 are integers and V10 (t) is the
normalized complex amplitudes of signals encoded in phase by these

sequences.

M - nIr- Or
. LU ... U f..../

M~ 1
1 Uz 13r-=

"L -i i L i U L.=,l LI ,

. .I't12 I.I U I. .I€4) ..-

.-. rM-'r-n r-in .I*,*
Jsl~ ~ ~ le-o -- 3 -j.:

Fig. 4.2.3. Calculation of values of cross-correlation
function of two binary pseudorandom sequences at three
values of time shift.

The statement made above is illustrated by the example of calcu-
lating the cross-correlation function of two binary pseudorandom 164

sequences with NI - 7 and N2 - 3 for the time shift T - 0, To and 2 O
(Fig. 4.2.3). Since the second sequence is repeated with period 3T0 ,
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the time shifts T = 3T0, 4T0, 5T0, 6T0 , 7T0, ... reduce to the con-

sidered cases for T = 0, To, 2T0 , 0, To, ... , respectively. With a
shift by r, differing from integer To, the normalized cross-correlation
function has the same value. Thus, the normalized cross-correlation
function is constant and equal to 1/21, which confirms the statement
made above.

If N1 and N2 are taken as sufficiently large (and relatively prime)
numbers, then the normalized cross-correlation function of the corre-
sponding binary pseudorandom sequences will be as small as these

sequences can be regarded as essentially uncorrelated.

3. Signal Production. Structure of Optimum Filter.

To produce a signal whose phase is manipulated by 7t by the law of
a binary pseudorandom sequence,a modulating oscillation must be

generated. It is simpler to form the latter by means of a nonequiva-
lent circuit [99], since rules (4.2.2) and others are nonequivalence

relations.

A block diagram of a device for generating an FM signal
(Fig. 4.2.4, a) consists of a nonequivalent circuit (or adder
modulo 2) made on two AND elements, an OR element and a NOT element, a
generator for a single pulse with length TO, an additional OR circuit,
delay lines of nT0 = 2T0 with lead from the midpoint, a balanced
modulator and high-frequency generator wo.

If longer sequences formed by rule (4.2.2) are used, only the
electrical length of delay line n'o and the position of the lead from

this line that provides a delay by time kT0 varies in the block

diagram.

The number of inputs of the logic circuit that implements this 165
rule and accordingly the number of leads of the delay line, which is
one less than the number of cofactors (Fig. 4.2.5), is increased when
a sequence is formed by rule (4.2.1) using a large number of cofactors.
In this case the logic circuit consists of several nonequivalent

circuits. 149
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Fig. 4.2.4. Block diagram of signal generator withbinary pse~dcrandom phase manipulation at n = 2 andtime diagrams of voltages.Key: (1) AND: (2) NOT; (3) OR; (4) Balanced modulator;(5) Single video pulse generator; (6) High-frequency
generator.

The circuit of a binary sequence generator can also be made byusing a shift register. In the simplest case (n = 2), it contains, 166besides the elements indicated above, two flip-flop stages of a shiftregister and a timing pulse oscillator (Fig. 4.2.6, a). The repetitionrate of the latter is equal to the length of the elementary transmission.

5'.

7,ro a

rig. 4.2.5. Block diagram of binary pseudorandom*1 sequence generator with delay line at n -5, m - 3,Key: (1) OR; (2) Single video pulse generator.
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b)-

Fig. 4.2.6. Block diagram of binary pseudorandom
sequence generator with shift register.
Key: (1) OR; (2) Single video pulse generator;
(3) Timing pulse oscillator.

In the general case the shift register should have n flip-flops.

When using rule (4.2.2), signals are fed to the nonequivalent circuit
from the k-th and last flip-flops of the register and if the number of 16'
cofactors in (4.2.1) is equal to four, then it is fed from the k-th,
1-th, m-th and last flip-flops (see Fig. 4.2.6, b, where k = 1, 1 = 2,
m = 3 and n = 5).

An optimum filter for a signal with pseudorandom phase manipulation
law (Fig. 4.2.7, a) consists of one for a single radio pulse of length
ro, delay lines by tim (N - 1)TO with (N - 2)-th uniformly arranged

leads, an adder and signal storage with period NT0 = T. The latter
accomplishes interperiod processing of the received signal (see the
next chapter).

The considered optimum filter circuit (Fig. 4.2.7, a) operates on
an intermediate frequency (PCh). Because of this, the requirements on
the accuracy of maintaining the equivalence of the delay time between
adjacent leads of the delay line and the length of the elementary pulse 161
are very rigid (the time error should be much less than the period of
the intermediate-frequency carrier oscillation). To significantly
attenuate these requirements so that the time error is much less than
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Fig. 4.2.7. Block diagram of optimum filter and FM
signal (a) and time diagrams of voltages when one (b)
and two (c) reflected signals are fed to the input.
Key: (1) RF optimum filter for single pulsed signal;
(2) Pulsed signal storage.

only the length of the elementary pulse, the optimum filter circuit

must be altered so that the delay line (and storage device) operate

on video frequency. Since the initial phase of the signal to be

received is usually known beforehand, this optimum filter circuit
should be quadrature (Fig. 4.2.8, a). It consists of two coherent
detectors controlled by heterodyne oscillations shifted by 900, two

delay lines with leads, two storage devices, two square-law generators

and an adder.

But in this case implementation of delay lines with leads causes
the greatest difficulties. To avoid these difficulties, so-called

discrete or digital optimum (matched)filters [100-102] are used in
which shift registers consisting of N flip-flops are used instead of 16!

these lines (Fig. 4.2.8, b). A signal in the form of a video pulse
sequence is fed to the input of the first flip-flop of the register

from the output of one of the coherent detectors. The video pulse
sequence is pushed by pulses of the timing pulse oscillator, following

with period To, to the next flip-flops of the shift register. The
152
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* j Fig. 4.2.8. Block diagrams of optimum receiver for FM
signal and digital optimum filter.
Key: (1) RF optimum filter for single pulsed signal;(2) Coherent detector; (3) Pulsed signal storage; (4)

Square-law generator; (5) Timing pulse oscillator.

voltages tapped from the output of one of the halves of each flip-flop
are added in the outpt resistn ce as a function of the code to whi

this digital filter is tued, foring a large voltage spike at the

output only if a pulse sequence optimum to the given filter is recorded

on the flip-flops of dte shift register.

Before being fed to the coherent detectors, the signal is subjected

to rigid restriction in the bandpass limiter, which leads to losses in

the signal/nois e rat onitheorder of 1 dB with a wek signal 103-105].

th e advantages of a digital opt filter include its reliaility,

absence of restrictions on the length of the register (and accordingly
of the number of N pulses in the period of the sequence), the absence
of attenuation of the pulse sequence when moving along the register and

the capaility of canging he pulse shift rate in a siple manner.

4. Effect of Filter ad Signal Error.Ie Analysis of te amplitude, phase and time distortions of the signal

du to inaccuracy of the eights of the delay line leads in amplitude
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and phase, inaccuracy of the moment of signal phase manipulation,
inaccuracy of installing the delay line leads and so on shows [15,

106-109] that the effect of these-distortions on the level of side lobes

of the output signal decreases as the number of N elementary signal

pulses increases. This is explained by the fact that the optimum filter,
due to the pseudorandom nature of the signal, has a pseudorandom

structure, as a result of which regular distortions of the signal after

it passes through the optimum filter acquire a random nature and are
added as random values [15]. Random signal distortions caused by random 17(

deviations of the amplitudes and phases of the weights of the delay line
leads will be added in the adder. Because of the independence of dis-
tortions at each lead, the standard deviation of the total distortions

will be N' times greater than those on each lead. The power of theI output signal is N 2 times greater than the signal output on each lead.
Therefore, the ratio of the standard deviation of distortions to signal

output is N times less at the output than on the delay line lead.

Linear phase distortions caused by the time error between the

length of the elementary pulse and the delay time between adjacent
leads of the delay line are the most unfavorable. Unlike the distor-

tions considered above, accumulation rather than averaging of these

distortions occurs in an optimum filter. Therefore, the effect of
these distortions increases with an increase of N. Because of this,

special measures must be implemented to reduce these distortions.

Calculations show [1091 that if a video frequency optimum filter

is made on a delay line constructed on sections of capacitors and
inductances with 2% tolerances and with temperature coefficients of

capacitance and inductance equal to 10- for a signal with N < 10 3
then a decrease of the signal/noise ratio by voltage due to scattering

of parts and variation of temperature by ±500 will not exceed 151,

which is quite acceptable.

5. Advantages and Disadvantages of System With Pseudorandom Phase
Manipulation

Systems in which the signal has pseudorandom phase manipulation
(PFM) permit one to achieve very high resolution both in range and
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speed. However, the indicated factor is achieved at high values of N,
on the order of 1,000. This requires selection of N on the order of 10.

With the same peak power and retention of the same range resolution,
use of this system compared to the simplest pulsed system permits one to
inc- ase signal energy N-fold and accordingly the effective range r
times, which yields 4V1023 = 5.655 times at N = 1,023.

Apparently, no better codes than a binary pseudorandom sequence 1
* it exists in general [85] since the systems that use them essentially real-

ize their potential capabilities, which ensue from the uncertainty rela-
tion in radar (3.9.8).

No special difficulties arise when designing a transmitter*1 (pulse sequence generator, balanced modulator and high-frequency

HoweveL,, implementation of a wideband delay line with (N - 2) (i.e.
on the order of 1,000) leads in an optimum filter is related to great
engineering difficulties. To avoid them, digital optimum filters or

* integrated circuits are used. The second disadvantage of the system
ensues from the continuous nature of signal emision and includes the
need for very careful tie-in of the transmitter and receiver.

Despite the seriousness of these difficulties, they are surmount-
able. Radar systems with binary pseudorandom phase manipulation have
already been described in the literature [110-1111.

Besides the continuous operating mode of a system with pseudoran-
dom phase manipulation, the pulsed mode is also possible. In this case
the emitted pulse signal is phase manipulated throughout its length by
a single period of a binary pseudorandom sequence. In this case the
operation of the transmitter and receiver can be dispersed in time.

The length of the signal comprises a fraction of the repetition period
of the system. Therefore, it is considerably easier to implement an

optimum filter for this signal.
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However, in this case the signal energy and accordingly the effec-

Stive range of the system are less with the same peak transmitter power.
Moreover, the autocorrelation properties of this signal are considera-

bly worse than those with analog operating mode--the excess of the max-

imum autocorrelation function of the signal above the highest absolute
value of its side blips comprises approximately Y rather than N.*

These pseudo-noise signals are used not only in radar but in space

radio communications as well (96].

We note in conclusion that the autocorrelation function of complex 17

amplitude shown in Fig 4.2.1 has a signal whose phase is manipulated
not only by a binary pseudorandom sequence but by quadratic residue

(or Legendre) sequences and some others described in the books of V. I.
Tikhonov [15] and S. Golomb [96]. As an example let us present two

quadratic residue sequences: + + - + + + --- + - (N = 11) and

+ + -- + + + + - + - + ---- + + - (N = 19). These sequences are gen-

erated by more complicated circuits than in the case of binary pseudo-

random sequences. The optimum filters for these signals are construc-
ted by the same block diagrams (Figs. 4.2.6 and 4.2.7).

4.3. Signals Manipulated in Phase by Frank Code Law

The digital analog of a signal whose frequency is modulated by

linear law and accordingly whose phase is modulated by quadratic law
is a multiphase Frank signal (112]. It has constant amplitude and car-

rier frequency and consists of N = n2 elementary radio pulses of length

To and initial phase constant during the length of each pulse. The
value of the initial phase during the length of the k-th pulse (k =

= 1-N) is

P(k) = 2i. .k). (4.3.1)

where p and n are relatively prime whole numbers;

The regular method of synthesizing pulsed FM signals was developed by
D. Ye. Vakman (2141. Phase manipulation by random law inside a pulse

and from period to period is also of interest (2151.
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"(k)=E -k -E k 'n (4.3.2)
n

and E(x), as before, is the whole part of the number x.

Unfortunately, the complex formula (4.3.2) is insufficiently de-

scriptive. Therefore, the values of coefficients y(k) that character-
ize the law of variation of the initial signal phase are usually written
sequentially on the lines of the following matrix of rank n X n:

17:
0 0 o ... 0 0
) [ 2 , . , n- It- I

2 4 ... 2(a,-2) 2(n--) (4.3.3)
0 3 6 . .. 3(n-2) 3(,.-

0 -2 2(n-2) ... (n--2(nt--- ) (n -2) (n - 1)

Thus, the initial signal phase varies intermittently at the moment

one elementary pulse ends and the next one begins. The law of this
variation approximates the quadratic law of phase variation of a signal

with linear frequency modulation.

If this multiphase signal is repeated with period T = NT0 , then

the autocorrelation function of this signal will also be periodic and
equal to zero at any time shifts, with the exception of the neighbor-

hoods (of width 2'0) of those points in which this function reaches a

maximum.

A single period of a multiphase signal is used as the emitted

pulse with pulsed operating mode. In this case the excess of the maxi-

mum autocorrelation function above the highest side blip increases with

an increase of the number of elementary pulses in a multiphase signal

(see the solid curve in Fig. 4.3.1, plotted on the basis of materials

from (112]) and essentially does not differ from 3Vi_ at N > 9 (see the
dashed curve in the same figure). In this sense multiphase signals are

considerably better than all other known discrete signals (with the ex-
ception of signals with phase manipulation by Barker code law) and

specifically of signals manipulated in phase by a single period of a

binary pseudorandom sequence.
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Fig. 4.3.1. Excess of maximum above highest side
blip of correlation function of multiphase signal
as function of N.

Multiphase code (4.3.2) or (4.3.3) consists of n groups, in each 17:

of which the phase shift varies at a constant rate, which increases un-

iformly from group to group. This property of the code permits one to

construct very simple multiphase signal generators. Specifically, a

combination of a single radio pulse generator of length To and an adder
encompassed by feedback through an attenuator m times (m < 1), a delay 17,

device by time To and phase inverter by angle 6(l) =(21rp/n)l (where 1

is varied by a special program from group to group in the range from

o to n - 1), an amplitude limiter that eliminates signal amplitude

variations (which occur during circulation through the defect circuit

of the adder) and an amplifier can be used as such a generator.

The optimum filter for these signals contains a delay device by

time (N - 1)TO with (N - 2) uniformly arranged leads and also in the

general case N phase shifters by angle *i(i) - 2wr - *(N - i), where i

- i-N, and an adder. Essentially, the number of phase shifters is ap-

preciably less than N since the phase rotation angle *Wi - 2 for val-

ues of i for which y(N - i) - 0 modulo n according to (4.3.2) orI (4.3.3)o and there is no need for a phase shifter. A digital optimumj filter can also be used along with an analog filter (1131.

The optimum filter is unfortunately rather complicated at large
value of N.



CHAPTrER V
17:

OPTIMUM FILTERS FOR SEQUENCES OF PULSED SIGNALS

5.1. DESIGN OF FILTERS OPTIMUM TO SEQUENCE OF VIDEO PULSED SIGNALS

1. Preliminary Remarks

In radar, the signal to be recieved is usually a pulse sequence

(Fig. 5.1.1, a). Their repetition period (or quasi-period*) T is de-
* termined by the repetition period of pulses generated by the system
* transmitter. The envelope of the sequence of these pulses in the case

of circular scanning accomplished by the radar system is determined by
the shape of the antenna radiation pattern. If there is no circular
scanning, the envelope of the sequence has a rectangular shape and the
length of this sequence is equal to the time during which the transmit-
ter emits sounding pulses while the receiver receives the reflected

* signals.

The design of optimum filters for sequences of video pulse signals
formed by coherent detection of the corresponding sequences of radio
pulse signals is considered in the given section.

The term "quasi-period" is used with regard to the fact that the se-

quence of a limited number of repeated pulses is not,strictly speaking#

periodic and therefore has no period.
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The importance of this consideration follows from the fact that, 17(
as established in section 2.5, the use of optimum filters for single
pulsed signals having no angular (i.e., frequency or phase) modulation
permits one to achieve a comparatively slight gain in noise sta-
bility compared to the use of resistance-coupled, tuned and bandpass
amplifiers. Devices similar in properties to an optimum filter for
pulsed signal sequences permit a considerable increase of the noise
stability of the syster.

UW 2335a5;a M-32 N1 t

T

Irb
Fig. 5.1.1. Square-wave video pulse sequence (a)
and block diagram of optimum filter (b).

Further, for brevity, the term "square-wave pulsed signal sequence"
is used instead of the term "sequence of pulsed signals with square-
wave envelope."

2. Design of Filter Optimum to Square-Wave Pulsed Signal Sequence

Let a signal be a square-wave sequence of N square-wave pulsed
signals (Fig. 5.1.1, a). The problem is to select the linear device
whose pulse characteristic reproduces the shape of this signal in some
scale.

It was shown above (section 2.1, item 2) that a single square-wave
video pulse is formed as a result of the effect of a single pulse on a
filter optimum to this video pulse and consisting of an integrating,

delay by pulse length Tr and subtraction devices (Fig. 5.1.2).I The combination of a N - 1 delay device (each by the repetition
period of pulsed signals T) and adder or an equivalent system of one
delay device by time (N - 1)T with N - 2 uniformly arranged leads and
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Fig. 5.1.2. Second block diagram of optimum filter
and time diagrams of voltages.

an adder can be used to convert this video pulse to a sequence of N

pulses(Fig. 5.1.1, b). Since the number of pulses N in the sequence is

usually high and reaches several tens and even hundreds, then this op-

timum filter is very complicated and its use is unfeasible for this

signal.

Therefore, let us attempt to obtain a different block-diagram of 17

the optimum filter. We note that a single video pulse is converted to

an infinite series of these pulses with repetition period T using an

adder whose output is connected to the input by a delay device by time

T (Fig. 5.1.2, a). To obtain a sequence of N video pulses from an in-

finite sequence (but existing only at t >0), it is sufficient to feed

an infinite sequence to the combination of the delay device by time NT

and the subtraction device (Fig. 5.1.2, a).

Therefore, an optimum filter for a square-wave sequence of N video

pulses consists of an optimum filter for a single video pulse, an adder

included with feedback through a delay device by time T, a delay device

by time NT and a subtraction device (Pig. 5.1.2, a). The time diagrams
of voltages at different points of this optimum filter with a single
pulse acting at the input are shown in Fig. 5.1.2, b).
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The same structure of the optimum filter can also be achieved by

the spectral method of design [114].

A square-wave sequence of N square-wave video pulses of amplitude

V and length T has the spectrum [115-116]

WnS~n -
S ( 2V) - 2

sin

-- + I-V ) 7
Vd e - l r - I

Using (1.5.1) and assuming that

C=-Y and t= %
+

(A'2- 1)

we find the transfer function of the optimum filter

I to I(--- J (I - e-") (I - e7-MT).(5i.)

The first two multipliers are the transfer function (2.1.1) of an

optimum filter for a single video pulse. It is easy to see that

1/1-e-JwT is the transfer function of an adder with feedback through a 171

delay device by time T and that 1 - e-JwNT is the transfer function of

the combination of a delay device by time NT and a subtraction device.
Accordingly, we again find the same block diagram of an optimum filter
(Fig. 5.1.2, a).

An optimum filter can be constructed in similar fashion for trape-
zoidal, triangular and other sequences of video pulses [7, 114]. This

construction is easiest by using the congruence of an optimum filter

for a video pulse and a pulse sequence with envelope of the same shape.

3. Congruence of Optimum Filters for a Video Pulse and Pulse Sequence
With Envelope of Same Shape. Relationship Between Spectra of These
Signals.

Consideration of an optimum filter for pulse sequences of any
shape shows that they consist of two parts. The first part is an op-

timum filter for a single pulse, from which the sequence is formed, and
it is determined only by the shape of this pulse and its parameters.
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The second part is not dependent on the pulse parameters and is

determined by the shape of the envelope of the pulse sequence. There-

fore, we feel that it can be called an optimum filter for the envelope

of a sequence.

Comparing an optimum filter for a square-wave envelope of a se-

quence (Fig. 5.1.2, a) with optimum filter for a video pulse of the

same shape (Fig. 2.1.2), it is easy to find the congruence of the com-

ponents of these filters. Thus, an adder with delayed feedback in a

filter optimum to the envelope of the sequence of the same shape con-

forms to the integrator in an optimum filter for a video pulse. This

* is quite natural since this adder is essentially the integrator of the

envelope.*1 A delay device by the time of the length of the envelope of se-
quence NT (Fig. 5.1.2, a) and so on corresponds to a delay device by

the time of the length of video pulse T (Fig. 2.1.2).

This congruence permits one to construct a block diagram of an op- 180

* timum filter for the envelope of a pulse sequence of the same shape

* from the block diagram of an optimum filter for a video pulse.

The reason for the indicated mutual correspondence consists in the

fact that the video pulse and envelope of the sequence have identical

shape (7, 1171. Therefore, there is coupling between their spectra.

-ZTl T '4T I

Fig. 5.1.3. Video pulse sequence.

Actually, let a signal v(t) be a sequence of video pulses of iden-

tical shape v1 (t), lagging behind each other by a time that is a mul-

tiple of T and that have amplitude which varies by the law of the en-

velope of the sequence v2(t) (Fig. 5.1.3):.
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One can then show [7] that the spectrum of this sequence is

(5.1.2)

where SI(w) is the spectrum of a single pulse of the sequence having

amplitude equal to 1;

*cc
'(V) '(n7*)e-"= Y S.(--+-/kO); (5.1.3)

and S2(w) is the spectrum of the envelope of sequence v2(t).

Function 53(w) describes the spectrum which has period Q = 2,r/T

and maximums at frequencies that are a multiple of this period, since

for any integer k 18

*and

S (W) = S (0) . = u(, rTJj=

= S, .== ; S, (i).

It follows from (5.1.3) that the spectrum 93 (w) of the lattice

function f(n] = v2 (nT) is equal to the sum of the spectra of its con-

tinuous envelope v2 (t), shifted along the axis of frequencies by values

k that are a multiple of the pulse repetition rate in the sequence, and

k varies from -- to +-.

The width of each of the spectra of sum (5.1.3) obviously has an

order of magnitude inverse to the length of the envelope T2, i.e.,

A93k x 2r/T2. Since the length of the envelope of the sequence is

usually much greater than the pulse repetition quasi-period in this se-

quence--T 2 >> T, then the width of each of the spectra of the sum is

much less than the repetition rate n, which is equal to the period of

this spectrum.

Thus, the spectrum S3 (w) is periodic, with comparatively narrow

maximums at frequencies that are a multiple of the repetition rate,

and the maximums are separated from each other by regions of very low

values.
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Thus, the spectrum 93(w) has the shape of a comb (Fig. 5.1.4, a)

and is therefore called a comb spectrum (116].

The spectrum of the pulse sequence 5(), which is the product of

the uniform comb-shaped spectrum 93(w) and the spectrum of a single

pulse 91 (w) (Fig. 5.1.4, b) due to (5.1.2), is also comb-shaped (Fig.

5.1.4, c), but is no longer a uniform but a modulated spectrum S()

02 3 4 5
S,-

S b)

c)

Fig. 5.1.4. Comb-shaped spectra (a and c) and single
pulse spectrum (b).

As indicated above, this property of being comb-shaped is typical 181

for the spectra of sequences of periodically repeated pulses with en-

velopes of any shape. Therefore, the optimum filter for any sequences

of periodically repeated pulses should contain a device with a comb- 182

shaped frequency characteristic, which is called a comb filter (116,

* 118, 1191.

4. identity of Filter Optimum to Pulse Sequence and of Ideal Comb
Filter

A comb filter is, for example, an adder with feedback delayed by

time T, supplemented with a delay device by time PT and a subtraction

device (here P is some integer equal to,, for example, the number of

pulses in sequence N). A system of a delay device by time (P - U)T



• .It

with (P - 2) uniformly arranged leads and an adder is completely

equivalent to this device (Fig. 5.1.1, b).

These comb filters have the transfer function

i_ e_ r _=e ( .. TP) (5.1.4)

where
.PT

____ (5.1.5)S(w,r P)= 2i--

sin

is an ideal comb function (Fig. 5.1.5). Its frequency period is equal

to n at odd value of P and 20 at even value of P. The period of the

transfer function of comb filter (5.1.4) is equal to the repetition if

rate Q regardless of whether the number P is even or odd. The maximum

values of this function increase as P increases, while the frequency

zones corresponding to the higher values of the function are constricted.

i aif
8 - -

o a1A \ ,/X4 i\ 11

Fig. 5.1.5. Ideal comb functions.

Let us consider a simple example of a square-wave pulse sequence of 184

any shape. In this case
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O,(nT) =V at na',
a (nT) =0 at n >.w')

and.

+ . -"2.',I + I

0, O.(IT) 2- - '

sin WT

=V f (-,, IV).

where N =2M + 1.

Moreover,

Suac==(,(kG)=VAN and S(f)=VS,(%)f(s,T,N).

The latter expression in the case of square-wave pulses coincides

with that presented in section 2. The spectrum of a square-wave se-

quence of square-wave pulses is plotted in Fig. 5.1.6.

5-

Fig. 5.1.6. Comb spectrum of pulse sequence.

Since the transfer function of an optimum filter differs only by 18

the multiplier from the signal spectrum (of symmetrical shape), then

the jptimum filter for a pulse sequence is an ideal comb filter com-

pletely matched to the spectrum of this sequence. It is also distin-

guished by this from comb filters that are a set of ordinary resonance

filters tuned to frequencies that are a multiple of the repetition

rate (116, 120].
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The number of these resonance filters is ecrual to the ratio of

the bandpass to the repetition rate

V = -' = F =AFT.

The bandpass of a comb filter is selected from the condition of the

permissible distortion of the pulse when it passes through the comb

filter &F -b/r, where b is a coefficient on the order of one or aI fraction of it. Therefore, b

.1 ~~V=-- Q,(..6

.4 where Q is the on-off time ratio of the pulses in the sequence, which

has an order of a thousand in radar. Assuming that b is equal to a

* comparatively low value of 0.5 and that Q = 1,000, we find v=500.

A comb filter in the shape of a set of this number of resonance

* filters tuned rather precisely to frequencies that are a multiple of the
repetition rate is a very cumbersome device and one complicated to tune

and operate. Specifically, the problem of precise phasing of the oscil-

lations taken from the separate circuits during their addition in the

adder is very complicated. The use of such a comb filter is feasible

only if there is a low on-off time ratio of pulses in the sequence

[120] and low requirements on the quality of the pulse at the output

of this filter when coefficient b can be selected as sufficiently

small. In this case the pulse will be strongly extended in time and
its time position can be determined only with a large error.

5. Realizability of Optimum Filters for Sequence of Pulses 18(

It was shown above that an optimum filter for a pulse sequence

consists of one for a single pulse, an adder with delayed feedback,

a delay device and a subtraction device.

All these components, with the exception of the adder with delayed

feedback, can be accomplished. If an adder with delayed feedback is

made, it is unstable and will be self-exciting since its feedback coef-

ficient is equal to one. To eliminate the self-excitation of this de-

vice, one must reduce the value of its feedback coefficient. To do
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this, a device with transfer coefficient m whose value is less than

one is connected to its feedback circuit. It can be alled an

attenuator.

+

Fig. 5.1.7. Block diagram of
recirculator.

If the coupling coefficient m of the device (Fig. 5.1.7) is selec-

ted rather close to one (but less than this value), then this device,

called a recirculator, will be as close to the ideal in its properties

that losses in the signal/noise ratio will be insignificant. This prob-

lem is investigated in detail in section 5.3.

5.2. Optimum Filters for Sequences of Radio Pulse Signals

1. Preliminary Remarks

Optimum filters for sequences of radio pulse signals have both

the gains of optimum filters for radio pulses and the grains of

those for pulse sequences in front of optimum filters for single pulses.

Therefore, they are of great interest. 18

Let us distinguish radio pulse sequences of two kinds*:

1. A radio pulse sequence of first kind (Fig. 5.2.1, c), which

is formed by amplitude pulse modulation of a continuous harmonic oscil-

lation (Fig. 5.2.1, a) by a video pulse sequence (Fig. 5.2.1, b). in

this case the initial phases of the different radio pulses of the se-

quence are different in the general case (if the product of the carrier

frequency fo by the repetition quasi-period T differs from an integer).

The given classification of radio pulse sequences is not generally ac-
cepted and is introduced only for convenience of exposition.
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Fig. 5.2.1. Formation of radio pulse
sequences.

2. Radio pulse sequence of second kind (Fig. 5.2.1, d), which

consists of radio pulses with identical initial phases. These radio

pulses differ by time position: they are delayed with respect to the
first pulse by a time that is a multiple of the repetition quasi-period
T.

If the product of the carrier frequency f0 by the repetition quasi-

period T is an integer, i.e., the repetition quasi-period is a multiple

of the period of the carrier oscillation, these sequences are completely

identical.

If the sequence consists of radio pulses with different initial 188

phases, but the law of their variation is known (for example, in the

case of a radar station when the difference of initial phases of the

received radio pulses is determined by the difference of the initial

phases of the emitted radio pulses), then this sequence can be converted

by means of coherent-pulse equipment (1541 to a radio pulse sequence of

both the second and first kind.

Finally, if the sequence consists of radio pulses with random in-

itial phases, then this sequence cannot be reduced to a sequence of the

first or second kind and is noncoherent (see item 2, section 6.2). Op-
timum filtration of this sequence on a radio frequency is impossible

and can be done only after it is converted by means of amplitude detec-

tion to a video pulse sequence.

2. Optimum Filters for Radio Pulse Sequences of First Kind
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Using the congruence of an optimum filter for video and~radio
pulses, established in item 3, section 2.2, it is easy to construct an
optimum filter for sequences of radio pulse signals of first kind from
known optimum filters for sequences of video pulse signals (see section

It is shown in item 2, section 5.1, that an optimum filter for a
square-wave sequence of video pulse signals consists of an optimum fil-
ter for a single pulse of this sequence, an adder with feedback delayed
by T, a delay device by time NT and a subtraction device (Fig. 5.1.2, a).

However, as follows from item 3, section 2.2, the combination of a
delay device by time T and phase shif ter by angle x (T) = 2TR (f OT) in a
radio-frequency optimum filter corresponds to a delay device by the
same time in a video frequency optimum filter. In like fashion, the

combination of the same delay device and phase shifter by angle X (NT)
corresponds to a delay device by time NT in a video frequency optimum
filter. Moreover, an optimum filter for a single video pulse corre-
sponds to one for a radio pulse (see section 2.2). 189

Fig. 5.2.2. Block diagram of optimum filter for radio
pulse sequence of first kind.
Key: (1) Highly selective tuned amplifier.

Because of the foregoing, an optimum filter for a square-wave se-

* quence of square-wave radio pulses consists of a highly selective tuned
* amplifier, a combination of delay device by time -r and phase shifter

by angle X(T), an adder encompassed with feedback through a delay de-
vice by time T and a phase shifter by angle X (T), a combination of a

delay device by time NT and a phase shifter by angle x(NT) and two

subtraction devices (Fig. 5.2.2).

In similar fashion, using an optimum filter for a trapezoidal vid-
eo pulse sequence (item 3, section 2.4), and also the congruence of the
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components of video and radio frecauency optimum filters noted above,

it is easy to construct an optimum filter for the indicated radio
pulse sequence of first kind.

* 3. Optimum Filters for Radio Pulse Sequences of Second Kind

It is easy to see that the use of phase shifters by angles X(T)fand x(NT) in an optimum filter for a square-wave radio pulse sequence'4 of first kind (Fig. 5.2.2) is caused by the fact that the radio pulses
being fed to the adder or subtraction device should have identical in-
itial phases for normal operation of this filter.

In the case of radio pulse sequences of second kind, the initial

phases of separate radio pulses are identical and therefore there is no 190
need to use an optimum filter of the indicated phase shifters (however,
a phase shifter that rotates the phase by angle X(T) should be retained

in the general case).

Accordingly, the block diagram of an optimum filter for the enve-

lope of a radio pulse sequence of second kind coincides completely with
that of an optimum filter for the envelope of the corresponding sequence

of video pulse signals.

The block diagram of an optimum filter for a radio pulse sequence

of second kind differs from that of an optimum filter for the corre-

sponding video pulse sequence by the presence of an optimum filter for
a radio pulse instead of one for a video pulse.

The difference in the circuits and designs of these filters is

more significant since the adder and subtraction devices, designed to

admit video pulses, will differ considerably from similar devices de-

signed to operate with radio pulses.

Incomparably more rigid requirements are placed on delay devices

used in optimum filters for radio pulse sequences (and for radio pul-

ses) in the ratio of accuracy and stability of delay time T (and T)*1than in the case of optimum filters for video pulse sequences (and for
video pulses) [13].
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Whereas instability of delay time &t3 should be much less in th4

latter case than the pulse length T:

Ala< '

the following condition must be fulfilled in the case of radio pulse!

i ~At, -oe To 7."IIf this condition is observed, pulses being fed to the adder (subtra(

tion device) will not be in phase, which disrupts normal operation ol

an optimum filter. Because of this, optimum filters for radio pulse

sequences are considerably more difficult to accomplish than optimum

filters for video pulse sequences.

It is for this reason that optimum processing of radio pulse se-
quences is usually carried out by preliminary conversion by means of

detection to a video pulse sequence and subsequent optimum filtratioi

on the video frequency rather than by direct optimum filtration on t!

radio frequency. In order that these methods of processing be equiv

lent, it is necessary that detection be a linear operation, i.e., th4

the detector be cophasal (coherent). This problem is discussed in m(

detail in the next chapter.

5.3. Operating Mechanism of Optimum Filter for Square-Wave Sequence
Square-Wave Pulses

1. Signal Transmission

If the indicated sequence acts on the input of an optimum filte

for a square-wave pulse sequence (Fig. 5.1.2, a), the voltages at di

ferent points of this filter vary according to the time diagrams sho

in Fig. 5.3.1, where T = 3T and N = 5 are selected to simplify the p

An optimwm filter for a single pulse, by accomplishing optimum

•.-tt-> processing of the signal, converts each square-wave puls

4. sequence to a triangular pulse of double length (Fig.

-" ule of this sequence is transmitted to the c

* • ~h t s f L fed to the second input of the adc

-w -cis in this case in time with the
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second pulse of the sequence. A pulse of double amplitude is formed

at the output as a result of their addition. A pulse of triple ampli-

tude is generated at the output after delay by T and addition with the

third pulse.

This process of a sequential increase (storage) of pulse amplitude

(and generally of voltage) in the adder is continued until pulses are

fed to its input. After the last (n-th) pulse arrives, the pulse amp- 192

litude at the output of the adder will be N times greater than that at

the input. This pulse will then be repeated with quasi-period T (Fig.
5.3.1, c).

,, KAAAAAAAA
- .2, T WT or1_AAAA

d)
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Fig. 5.3.1. Time diagrams of voltages in optivum filter for
pulse sequence.

The sequence formed in this manner is fed directly to the subtrac-

tion device with delay by time NT (Fig. 5.3.1, d). As a result, a tri-

angular sequence (2N - 1) of triangular pulses will be formed at the

output of the subtraction device (Fig. 5.3.1, e). The middle pulse of

this sequence has the greatest amplitude

I 1-.-V: (5.3.1)

which does not differ from the pulse amplitude of the sequence at the

output of the adder after completion of the signal at the output.1 Thus, the combination of the delay device by time NT and of the 193

subtraction device does not change the signal amplitude and, as will
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be shown further, it is required only to attenuate the noise

output.

2. Noise Transmission

Using (1.7.1), it is easy to show that the noise at the output of

f an optimum filter for a single pulse (Fig. 5.1.2, a) has the autocorre-

lation function (Fig. 5.3.2)

R(t)=a(i-- if) at I (5.3.2)

R.(t)=a at jtl>.

and output &=a, (see 2.3.11)).

Accordingly, the two instantaneous values of noise separated by a

time interval whose value is greater than the pulse length are com-
pletely uncorrelated.

-o ,r ,

Fig. 5.3.2. Correlation function of noise at
output of optimum filter for pulse.

The noise at the output of the adder is obviously the sum of the

noise oscillations being fed to its input at a given moment and at mo-

ments of time that precede it by a time that is a multiple of the dura-

tion of the delay in the feedback circuit:

bo

The number of these noise components is infinitely high since

noise is fed continuously to the optimum filter. As a result of (5.3.2)

and the fact that the repetition quasi-period is considerably greater

than the pulse length:

5(5.3.3)
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these components are uncorrelated with each other. Therefore, their 194

outputs are added. Since the number of terms is infinitely great, the

noise output at the output of the adder is an infinite number of times

greater than the output at its input (2.3.11), i.e.,

2 (5.3.4)

Because of this, the signal/noise ratio at the output of the adder
is equal to zero with any finite number of pulse signals N.

4 However, noise has a finite output after further transmission of

the combination of delay device by time NT and subtraction device. This

is explained by the fact that the noise at the output of the adder is

repeated with quasi-period T and therefore its values for two moments

of time separated by an interval that is a multiple of T are completely

correlated. Because of this, two oscillations of infinite output, butI completely correlated, are subtracted in the subtraction device. In
this case the noise output is reduced an infinite number of times and
as will be shown below, becomes finite.

-'. -2? 0 ZF

Fig. 5.3.3. Correlation function of noise at output
of optimum filter for pulse sequence.

To determine the value of this output, let us calculate the auto-

correlation function of output noise, making use of (1.7.1) and the
previously found pulse characteristic of an optimum filter (U7 in Fig.
5.1.2, b). The autocorrelation function of noise calculated in this
manner at the output of an optimum filter (Fig. 5.3.3) differs from

the signal voltage at the output of an optimum filter (Fig. 5.3.1, e) 19

only by scale and shift toward a decrease of time by the value to
-(N - 1)T + t
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The maximum achieved by this function at t 0 also characterizes

the noise output

a! =R, () = ~c.(5.3.5)

The latter is N times greater than the noise output (2.3.11) at the in-

put of the adder. This is equivalent to addition of the output of
noise oscillations during N repetition periods, i.e., during the dura-

tion of the signal at the input.

Thus, the combination of the delay device by time NT and the sub-

traction device, without changing the signal level, considerably re-

duces the noise output, limiting the time of its storage by the
signal length. Because of this, the indicated combination can be

called the limiter of the storage time of input oscillations up to the
expected signal length.

The signal/noise ratio at the output of an optimum filter

q2.5!L -a- (5.3.6)

is N times greater than this ratio at the input of the adder (2.3.12)

and fully agrees with the general formula (1.2.11).

The same finite results are also found when considering the trans-

mission of a square-wave sequence of pulse signals and noise through an

optimum filter made by a diffe::ent block diagram (Fig. 5.1.1, b). A

total of N determinant pulse signals and the same number of uncorrelated

noise oscillations is added in the adder of this filter. As a result

the signal at the output is increased N times in voltage, i.e., N2 times

in output, while noise increases N times in output. Accordingly, the

signal/noise ratio in output increases N times.

We note that the order of the arrangement of the components can
be changed due to the linearity of the different components of an opti-
mum filter (Fig. 5.1.2, a). Thus, for example, an adder with delayed

feedback can be placed after a combination of delay device by time NT

and a subtraction device. This block diagram of an optimum filter is 195
easiest to accomplish in practice since the noise output stored in the

177



adder in it will not reach an infinitely large level, but will be fin-

ite and equal to (5.3.5). In this case the different components of the

optimum filter will operate in a considerably easier mode and therefore

they are simpler to realize.

5.4. Operating Mechanism of Systems That are Practical Approximations
of Optimum Filter for Pulse Sequence

1. System with Recirculator

The simplest practical approximation of an optimum filter for a

pulse sequence is a system which differs from this filter (Fig. 5.1.2,

a) by the fact that a recirculator is used in it instead of an unstable

adder with delayed feedback (Fig. 5.1.7).

The process of signal transmission through this system differs only

by the fact that the signal at the output of the recirculator is

stored by exponential rather than by linear law and its amplitude at

the output also decreases by exponential law after the end of the sig-

nal at the input (Fig. 5.4.1):

I1 V, (k) = o [k - ) T+ .] = V (I - .,)

V.(k: V, _m.m _# at 1< k <J,"
_V-1 ' (

!  at k>N. (5.4.1)

At moment of time to - (N - 1)T + T, the signal reaches maximum

amplitude

V "---- (i-M ) (5.4.2)

Specifically, at m - 1 we find (5.3.1).

As in the previous ideal case, further signal transmission through 19

delay device by time NT and the subtraction device causes no variation

of the maximum signal level.

Since a system of optimum filters for a square-wave pulse and re-

circulator has the pulse characteristic (Fig. 5.4.2, a)
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Fig. 5.4.1. Time Diagrams of Voltages at Input
and Output of Recirculator at m = 0.8 and M = 5.

h, (t) n h, (t- kT),
4=0

where h4 (t) = l(t) - l(t - T) is the pulse characteristic of an optimum

filter for a square-wave pulse, then, because of (1.7.1), the autocor- 19
relation function of noise at its output has the form shown in Fig.

5.4.2, b.

19
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Fig. 5.4.2. Pulse characteristic of combination of optimum
filter for pulse and recirculator at m - 0.8 (a) and corre-
lation function of output noise (b).

The maximum values of this function are observed at moments of 19

time that are multiples of the repetition quase-period T and vary by

the law

R,(kT)--mN.• (5.4.3)

Specifically, at k = 0, we find the output of this noise

- ' (5.4.4)
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The noise storage coefficient is then

2 -- ~~~-(5.4.5)
g4 I

Since the voltage at the output of the entire system is equal to
the difference of the voltage taken from the output of the adder and

the voltage at the output of the delay device by time NT:.1 then the noise at the output of the entire system has the output

Accordingly, the noise output is transferred by a combination of
delay device by time NT and subtraction device with coefficient

62

This coefficient is less than one, i.e., the noise is attenuated

in power, while the signal/noise ratio accordingly increases if mN ,
> 0.5, i.e., if the number of pulses in the sequence satisfies the

inequality

NV<N.=InO, 0,7 (5.4.6)

Accordingly, the use of the combination of subtraction device and

delay device by time NT has meaning only with a comparatively small

number of pulses in the sequence or with a feedback coefficient of the 19

circulator sufficiently close to one. Thus, for example, at N - 20

the feedback coefficient should be greater than 0.97, which is diffi-

cult to achieve in practice.

Thus, the use of a combination of delay device (by time NT) and
subtraction device in the optimum filter for sequences of a greater
number of pulsed signals is usually unfeasible.

This conclusion is very important, especially in practice. The

fact is that a delay device by time NT whose value can reach a frac-

tion of a second is practically impossible to accomplish in the form
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of an ulttasonic line with sufficiently broad bandpass and moderate
attenuation (at least at the given stage of equipment development).

Using (5.4.2) and (5.4.4), we find the ratio of the square of the
peak signal and noise output at the output of the recirculator:

v?2 +~ Na 0!

Accordingly, the use of a recirculator permits one to achieve a

gain in output signal/noise ratio

B=-2 + (5.4.7)
14 I-M

With constant value of m, the gain increases with an in-
crease of the number of pulses at first rapidly then more slowly and
then essentially remains unchanged (Fig. 5.4.3). The latter is ex-
plained by the fact that the signal ceases to be accumulated at mN <<l .

*Let us call the number Na at which the gain comprises 0.95 of the
maximum possible at given value of m, reached at N = -, the active
number of stored pulses. It follows from this definition that

A',: -1(1-0 ,3 . (5.4.8)

With a constant number of pulses, the gain increases with an in-
crease of the feedback coefficient and then, passing through maximum
at some value of m = m0 , drops sharply (Fig. 5.4.4). This is explained 200

by the fact that the signal is fed to the input (and accordingly is
stored) during N periods while noise is fed to the input during an in-

finitely large number of periods. Therefore, the output signal power 201
initially increases more rapidly with an increase of m and then more
slowly than noise output. At m - 1 the noise output increases without

limit while the signal output increases only N2 times.

Investigating (5.4.7) for the maximum value with respect to m,
we find an equation for the optimum feedback coefficient:
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Fig. 5.4.3. Gain as function of N.

02

For the practically important case of large value of N, its root is

[121] 202

x, =exp 1.27 =I- 1.27
N (5.4.9)

The error of calculating the optimum feedback coefficient by this

formula is reduced w.th an increase of N and comprises a fraction of

a percent at N - 10. Therefore, mo z 0.98 at N - 50 and mo0 0.99 at

N - 100.
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Fig. 5.4.4. Gain as function of m.

It follows from (5.4.9) and (5.4.7) that the maximum possible 202

gain is

R.axc 0,8. (5.4.10)

Since, as shown in the previous section, an optimum filter for

the envelope of a square-wave sequence has the gain N, then a re-

circulator with optimum feedback coefficient permits one to achieve a

signal/noise ratio only a decibel less.

However, to achieve the maximum possible gain in the case of se-

quences consisting of a large number of pulses, one must increase the

feedback coefficient to values very close to one.

In practice this causes difficulties since self-excitation of the

circulator occurs with the slightest increase of the feedback coeffi-

cient due to instability of the parameteru.

To avoid the indicated difficulties when receiving sequences of a

large number of pulsed signals and in this case to achieve a further
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increase of signal/noise ratio, one can use several rather than one
recirculator. This possibility will be considered in the next section.

And now let us explain the conclusions achieved above by the spe-
cial method on the possibility of replacing an optimum filter by a cir-
culator for the envelope of a square-wave sequence of pulsed signals.
The recirculator has the transfer function

K(m) _= I
I - me - '

r

and the amplitude-frequency characteristic

which is a comb characteristic (see Fig. 5.4.5, plotted for m = 0.9). 203

At frequencies that are a multiple of the repetition rate, this
characteristic reaches maximum values

K.-K(n=t- at n=O,I,2.

and at frequencies of __(n+ _)11 , it reaches minimum values of

KUHN = T-

Thus, the considered device is a comb filter.

8

.0 9 79 12 '9 V'

Fig. 5.4.5. Frequency characteristic of re-
circulator.

,18
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If a sequence of pulsed signals and white noise is fed to its in-

put, only those spectral components which have frequencies close to the

signal repetition rate are transmitted to its output with large coef-

ficient. They include the most intensive components of the signal
spectrum. The remaining signal components and also most spectral com-

ponents of noise are transmitted to the output with attenuation.

Because of this, the signal/noise ratio at the output of a comb

filter is considerably greater than that at the input. The essence 20

of separation of periodic or quasi-periodic signals from a noisy back-
ground by means of comb filters is also included in this.

2. System With Two Identical Recirculators

Let us consider the operation of a system consisting of an opti-

mum filter for a single pulsed signal (OFOS) and two identical recir-

culators (Fig. 5.4.6).

000 + 5 + 8

Fig. 5.4.6. Block diagram of double system.
Key: (1) Optimum filter for single pulsed
signal

The voltage amplitude of the k-th pulse of a signal at the input

of the second recirculator is described by (5.4.1). Therefore, the
voltage amplitude of this pulse at the output at I < k < N is

V(k) =us 1(k- I) r+ -).I.
Iwo

- (I-n),' mb'1 mll-.li-r~

and at k > N is

V,. (k)= ] ,,-V. (n -1) = "' ,n'-Y"

X{i m -(i -m)lk (I -,N) -Nil.
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Having investigated the last expression for the maximum value with

respect to k, we find

(o = , N )-E( N,__ 0,5).
1 -r n I-m

The peak value of the output signal is 20

( mk-Y(I-mv-(1-m)X (5.4.11)
X 1. I _MN - J) V,-.: 3 - (1 -in , N )m *,- t

.I - i-m) 2

In the case frequently encountered in practice when NmN < 1, k0 z N and

V,64- Vt1 /(I.-m) , (5.4.12)

the peak value of the signal at the output is observed at the moment

of the end of the last signal at the input. The coefficient of sig-

nal storage by the second recirculator comprises g2 z (1 - M) - 1 and

coincides with a similar coefficient for the first recirculator.

Output noise u,(t)z=N mku,(t-kT) has the output
A =0

mIU (t)l = m - kT) u, (I -

kh_0 1=0

-Z ,,A ,R.(k-I)Tf.

where R5 (t) is the autocorrelation function of noise at the output of

the first recirculator.

Using expression (5.4.3) for this function, we find

-Ea +ma)(1 -n'). (5.4.13)

&=uima

Accordingly, the coefficient of noise storage by two recircula-

tors is

Q,- (I +m&)/(l-m 2 )', (5.4.14)

and by the second recirculator is

Q'Q, Q1 0+m')I -m)'. .4. -

1.86



OPTIMUM FILTERS AND PUJLSED SIGNAL STORAGE DEVICES. CU)

AD A 1 5 FR AEIG N TEC 
N L G 

WRS H - A T O 
LEZOHF/I9/

UNCLASSIFIED FTD-IO(RS)T-0182-81 N



11111.25 IhI* fll1.

MICROCOPY RESOLUTION. TEST CHART



- - - - - - o -

The ratio of the coefficients of noise storage by the second and first

recirculators 206

I= Q'/Q 1= (I +mI)/(l-M 2 ) (5.4.16)

is appreciably greater than one, comprising 9.53 at m = 0.9.

Thus, noise is stored in the second recirculator by a com-

pletely different law than in the first recirculator, increasing in

this case in power a considerably greater number of times. This is
explained by the fact that the uncorrelated values of noise are added
in the first recirculator, due to which their outputs are added, where-

as the instantaneous values of noise separated by an interval that is

a multiple of the delay time in the recirculator have a stronger corre-
lation after passage through the first recirculator and are therefore

stored in the second recirculator by a law close to the law of gain of

a signal which is stored by voltage rather than by power.

The signal/noise ratio at the output of the system comprises

2 V1' V +_____
q6 V +,,  " (5.4.17)

and the gain in signal/noise ratio is

(+m) (5.4.18)

The additional gain due to the second recirculator

R - B1112 -(1-m)2/ (1+ m2)

essentially does not differ from two recirculators at 0.8 < m < 1.

Thus, the use of a second recirculator permits one to achieve a

gain in signal/noise ratio no more than two in power. The reason for
such a small gain compared to (5.4.7) is included in strong correla-

tion of noise at the output of the first recirculator.

Comparison of (5.4.18) and (5.4.7) shows that the use of a second

recirculator permits one to achieve a gain of the same value as in a
system with a single recirculator whose feedback coefficient is
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considerably closer to one. Thus, for example, two recirculators with
m = 0.9 provide the same gain as one recirculator with m = 0.95. 2(

Thus, difficulties in realization of recirculators, related to pro-

viding a stable feedback coefficient sufficiently close to one required

to achieve a large gain in signal/noise ratio, can be overcome by ser-
ies connection of two or several recirculators.

3. System with n Identical Recirculators (Multiple System)

j It was established above that if the number of N stored pulsed

signals is so great that

MN < (5.4.19)

then the coefficient of signal storage by one recirculator comprises

gl z (1 - m)-1 . Therefore, the coefficient of signal storage by n

recirculators

g = go (-(5.4.20)

Let white noise with the following intensity and limited in band-

pass act on the input

F,)2a at 0<.2T.
F, 0 at a > 2zAF. j

Since the s-aare of the modulus of the transfer function of n

recirculators is

(' (.)I= -2mc cmT +..)-.

then the noise output is 208

.)o 2zAP

S do

k=.! (h-l)u

92AFT

"'m -,1, -,,,1 T _2Amr) +

188
r
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.... .. .... l ill l ' ~1 GI 11I ...... .... ]'



Xj dx dR2&T

(I-2,,x+,,)-+ - x,,,Cos x

and due to the fact that usually 2AFT >> ,

.:2AF-- ' ,
0

Using formula 3.616.2 of [92] and taking into account that the

output of input noise is 2 = 2aAF, we find the noise storage

coefficient

" (- 1, -(,, (1Z4-!_ (5.4.21)
h=O

It follows from (5.4.20) and (5.4.21) that a multiple system pro-

vides the gain [122]

2 
-4 

n o

_ - - -. -' = L = (5 .4 .2 2 )

Consideration of the dependence of this gain on n, shown by the 209

solid curves in Fig. 5.4.7, shows that the gain increases as n in-

creases and as m approaches 1, reaching very large values.

7

500 -- .

300 -- _

20

20 -

Fig. 5.4.7. Gain in multiple and two-stage systems
as function of relative total delay time.
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4. Two-Stage System

It was shown in item 2 that the use of a second recirculator iden-

tical to the first permits one to achieve a comparatively slight gain
in signal/noise ratio. This is explained by the fact that the noise
at the output of the first recirculator has strong correlation. The

harmful effect of this correlation can be attenuated by increasing the
delay time in the feedback circuit of the second recirculator M times
[1231 (Fig. 5.4.8), where M is an integer. In this case the second

recirculator, unlike the first, will accumulate the sequences of sig-
nals, each of which contains M pulses, rather than the received pulsed
signals. Thus, in this case the received pulsed signals will be 21C

stored in two stages. Therefore, the system is also called a two-
stage system. If ml and m2 are the feedback coefficients of these

recirculators, then the k-th pulsed signal at the output of the first
recirculator (i.e., at the input of the second recirculator) has, ac-

cording to (5.4.1) the amplitude

. kat I k<N.

In like fashion the lM-th pulsed signal at the output of the second

recirculator has the amplitude

q=1 q=I
vt i ,4 IP !

V,. M- - m T at I<I<L,

where z - m2/ml and L N N/M is the number of sequences stored in

the second recirculator.

Fig. 5.4.8. Block diagram of two-stage system.
Key: (1) Optimum filter for single pulsed signal.

The peak value of the stored signal, as shown by calculations

is observed at the end of the signal at the input of the system being
considered. Its value is
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V ,. VN '- V,, I - N. - "Z

Since usually z > 2 and L is on the order of 10, then zL >>l and

v, V( - .

Accordingly, the signal is stored by the analyzed system 21:

with the coefficient
,, LZ-M,

g= t, l-F. -
T7 0- -, -- (- m,)(0 - )

By analogy with the expression for the power at the output of

two identical recirculators (see item 2), the power at the output of

the considered system is

Y" , ,I(k -I) MTI.

-=0 0

t Substituting autocorrelation function (5.4.3) of noise at the output

of the first recirculator into this expression and adding the double

row, we find

2 as+M~N

Accordingly, the coefficient of noise stored by the system

comprises

= .'T/ (1-fff)(-4(,--.II'

while the power gain in signal/noise ratio is

Be.__ +_! at. I X
-, T -T ,T+, X (5.4.23)

Having assumed that M - 1 and accordingly that L - N, we find the gain

provided by two recirculators with identical delays
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Thus, the additional gain determined by an M-fold increase of
delay time in the feedback circuit of the second recirculator comprises 21;

R .-- I_ + , , 2 +-1 "

Specifically, if M and L are selected as large as mm <<l and
L1m2< 1, then the additional gain is

R- (I + Mtr2) / ( l- -r.)

and comprises 4.56, 9.54 and 19.5, respectively, at ml = m2 = 0.8, 0.9
and 0.95.

200 _

,,,,,100 /'

,I.
Fig. 5.4.9. Dependence of gain in two-stage system
on £4.

Consideration of the dependence of gain (5.4.23) on M4 (Fig.
5.4.9) shows that the gain initially increases sharply with an increase
of £4 and then increases more slowly, reaching a very sloping maximum,
after which it decreases smoothly. This is explained by the fact that
there is a sharp decrease of the noise storage coefficient with an in-
crease of M, beginning at one, due to the decrease of the correlation

192
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coefficient of the noise components stored in the second recirculator, 21

whereas the signal storage coefficient varies insignificantly due to

the reduction in the number of L accumulated sequences, due to which

there is a rapid increase of the gain. The decrease of the noise stor-

age coefficient slows down with a further increase of M and the drop of

the signal storage coefficient increases, which initially slows down

the increase of the gain and then leads to a decrease of it.

The optimum value of M [1241 at which the gain is maximum is

MORT= (O,6 -,7) mf(I-inl)N. (5.4.24)

Accordingly, very high efficiency of a system with two recircu-

lators having different delays is achieved with a large number of

stored pulsed signals due to an appreciable increase of the delay time

in the second recirculator.

Let us compare two systems for the extent of the gain, one of

which consists of n identical recirculators and the second of which

consists of two recirculators with delays by T and (n - 1)T, respec-
tively [122]. Both systems have identical length of the total delay

in their feedback circuits. This condition has an important practical
meaning since design of delay devices causes the greatest difficulties
when implementing these systems and these difficulties increase with

an increase of delay time.

Having assumed in (5.4.23) that ml - m2 = m and M = n - 1 and

assuming that mL <<l, we find

B3Sol[(I + M) (I -M)FlM.) /(I + M.). (5.4.25)

The dependence of this gain on n, represented by the dashed curves

in Fig. 5.4.7 have basically the same nature as the dependence of gain
(5.4.22) for a multiple system, but at 2 < n < 21 are located above the

latter, which also indicates the greater efficiency of two-stage sys-
tems compared to multiple systems.

Consideration of this dependence shows that at 10 < n < 21 a two-

stage system with m - 0.9 is equivalent to a multiple system with m - 214

- 0.95. The bottom dashed curve in Fig. 5.4.7, which characterizes
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gain (5.4.25) at m = 0.8, clearly reflects the fact that in the case

of any value of m distinct from 1 the increase of gain (5.4.25) slows

down and approaches its own maximum value with a significant increase

of n

Ba=f(I + in)l(-,),

equal to the square of the gain of a single recirculator. A further

increase of the gain is possible only by converting to a three-stage

system.

It follows from (5.4.25) and (5.4.22) that a two-stage system

provides an additional gain compared to a multiple system

0+R+! _ I-m

X (--,+h), l -)-I-, m' (5.4.26)

h=O

Specifically, at m = 1

n (2n -2)1R (1,n) 1i In R nn)=.n = I2 " - 1)01' 

A41

Consideration of the dependence of this gain on n (Fig. 5.4.10)

shows that in the case of m - 0.8 the gain initially increases with an
increase of n and then decreases after reaching a maximum at n = 9.

This is explained by the noted slowing of the increase of the gain of
a two-stage system with a significant increase of n and should occur

at any value of m < 1. However, at large value of m, the additional

gain reaches a maximum with large value of n.

At 0.9 < m < 1, the additional gain increases monotonically as

n increases to 21. In this case its value for any value of n is higher,

the closer m is to 1. At 0.9 < m < 1 and 9 < n < 21 the gain is in

the range fram 1.7 to 2.6.

Thus, compared to a multiple system, a two-stage system is more 215

efficient and is therefore easier to realize.
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The high efficiency of a two-stage system is explained not only

by an increase of the length of the total delay in the feedback cir-
cuits but by the efficient design of this system as well.

Z.6.

t0.

Fig. 5.4.10. Additional gain in two-stage system
compared to multiple system as function of relativerlength of delay.

Thus, the following systems may be sufficiently effective prac-

tical approximations of an optimum filter for sequences of pulsed

signals:

a) a system with a single recirculator if the number of N

stored pulsed signals does not exceed the actual number (5.4.8) of

pulses (let us call this system a single storage device);

b) a system with two identical recirculators (a double storage

device) if N comprises from one to two active numbers;

c) a two-stage system (two-stage storage device if N is double

the active number.

The storage systems enumerated above are analyzed in detail in 216

the second part of the book with regard to nonuniform frequency charac-

teristics of the feedback circuits (and primarily of the delay devices)

of recirculators, the nonoptimum nature of the prestorage filter and

detector and so on.
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Part 2 
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PULSED SIGNAL STORAGE DEVICES
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THR:SHLD'SIGNALS WITH COHERENT STORAGE Or' PULSED SIGNAL SEQUENCES21

6.1. PRELIMINARY REMARKS

1. Concept of Threshold Signal

A signal of such energy (output or amplitude), the probability

of correct detection of which at a given noise level and established

probability of a false alarm is equal to a previously defined value

* (for example D = 0.9 or D = 0.5 [125]), is called a threshold or mini-

mum distinguishable signal. In other words, a threshold signal is a

minimum signal in absolute value which is still detected with given

probability on a background of given noise level which causes a false

alarm with fixed probability.

The ratio of threshold signal to noise level is called the thresh-

old signal/noise ratio. Its value is determined both by the properties

of the signal being received and by the method of processing it, deter-

mined by the structure of the radio receiver and the parameters of its

components.

The threshold ratio specifically depends on whether the param-

eters of this signal (amplitude, initial phase, frequency, length and

repetition quasi-period) are previously known or not, whether this

signal is subject to fluctuations and what the law of these fluctua-

tions is and so on. The design of the receiver may also be varied as a

function of the signal properties.
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The signals in the given and following chapters are considered

in the form of a pulse sequence with previously known repetition quasi-

period and the receivers for detecting them are also considered. The 22

purpose of this consideration is to establish the structure of practi-

cally acceptable receivers in determination of threshold signal/noise

ratios.

2. Concept of Coherent and Noncoherent Storage

'I The radar signal being received is a radio pulse sequence. If

the initial phases of these radio pulses are identical or vary from

pulse to pulse by some known law (see section 5.2), then this sequence

is called coherent. If the initial phases of the radio pulses of the

sequence vary by random (or some previously unknown) law, this sequence

is noncoherent.

If the determinant nature of phase ratios of the pulses of a co-

herent sequence is used in reception, this reception is called coherent.

If reception is processing only the amplitude values of the oscillation

being received, then it is noncoherent (amplitude). Since the informa-

tion contained in the phase of the oscillation being received will not

be used in this case, the threshold signals will be somewhat greater

than those during coherent reception.

Reception of a noncoherent sequence of radio pulse signals can be

only noncoherent.

As established above, optimum processing of the radio pulse se-

quence being received includes its intraperiod filtration and storage

of individual periods. Storage of individual periods of the sequence

being received, which utilizes the coherent nature of its radio pul-

ses manifested in the determinant nature of the phase relations of

these radio pulses, is called coherent. It can be fulfilled on a radio

frequency and specifically in an optimum filter for the envelope of a

radio pulse sequence or in devices that are practical approximat&ons

of this filter, as which a recirculator or comb filter can be used in

the form of a combination of a large number of oscillating circuits

and so on. However, to reduce the requirements on the stability of 22:
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the components of this filter or storage device (see section 5.2), co-

herent storage is usually carried out on a video frequency after co-

herent detection of the coherent radio pulse sequence being received,

which converts it to a video-pulse sequence.

In this case a coherent (synchronous) detector (41-43] controlled

by a reference oscillation whose frequency coincides with the frequency
of the signal being received, is used in the receiver. if the signal

being received is known with accuracy up to the phase., then the phase

of the reference oscillation should coincide with the signal phase.

A coherent detector is a linear component. Therefore, a coherent

receiver is a linear system. Because of this, coherent storage on a
radio frequency, i.e., up to a coherent detector, is completely equiv-
alent to storage after a coherent detector. The latter is best accom-

* plished by a video frequency optimum filter for the envelope of the

received sequence of pulsed signals.

Storage (by periods) of the oscillation being received in which

only amplitude information is used and phase information is lost is

called noncoherent. It is accomplished after noncoherent (amplitude)

detection of the radio pulse sequence being received.

Threshold signals during coherent storage are considered in the

given chapter and those with noncoherent storage are considered in

chapter 10.

6.2. Coherent Storage of Completely Known Sequences of Pulsed Signals

1. Structure of Radio Receiver

A completely known sequence of pulsed signals can be regarded as

a completely known single signal of rather complex shape determined byj the shape of the given sequence.

As follows from Chapter 1, an optimum detector of a completely 222

known signal v(t) - V(t)cos (w()t + *) on a background of normal white

j noise n(t) consists of cross-correlation and threshold devices (Fig.

6.2.1, a).
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A radio-freqtfency filter optimum to a given signal can be used
as a device that calculates the cross-correlation function between the
signal and the oscillation being received x(t) = v(t) + n(t). The
given signal is obviously completely equivalent to the combination of
a coherent detector with reference oscillation cos(w0t + 0) and a video

frequency filter optimum to the envelope of the signal V(t) (Fig.
6.2.1, b).

()(2) 3 (4 .) (5)1

' (t €s~r c)
X44 go4 17Y Y l

Fig. 6.2.1. Block diagrams of receivers for coherent
storage of completely known signals.
Key: (1) Cross-correlation device; (2) Threshold de-
vice; (3) Radio-frequency optimum filter for single
pulsed signal; (4) Coherent detector; (5) Video fre-
quency optimum filter for envelope of sequence of pulsed
signals; (6) Optimum filter; (7) Radio-frequency filter;
(8) Video frequency storage device.

In the considered case of detecting a completely known sequence
of radio pulse signals, the video frequency filter should be optimum
for a corresponding sequence of video pulse signals. It consists of a
filter optimum to a single video pulse signal of the sequence and of a

video frequency filter optimum to the envelope of this sequence. The
first of these filters can be replaced by a filter completely equiva-
lent to it and optimum to a single radio pulse signal of the sequence
being received and placed in front of a coherent detector (Fig.

6.2.1, c).

In a receiver which is a practical approximation of an optimum
receiver, a radio-frequency optimum filter is replaced by a simpler
filter, while the video frequency optimum filter for the envelope of

the sequence is replaced by a storage device (Fig. 6.2.1, d).

2. Calculation of Detection Characteristics and Threshold Signals 223
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A receiver which accomplishes coherent storage of a completely

known sequence of pulsed signals (Fig. 6.2.1) consists"of linear com-

ponents (with the exception of the threshold device). Therefore, the

signal and noise pass through the receiver to the input of the thres-

hold device completely independently of each other. In this case the

noise at the output of the linear part of the receiver is distributed

by the same Gauss law as at the input (see item 1, section 2.2).

Because of this, relations (1.2.12) and (1.2.9) are valid for

the given case. Accordingly, correct detection and a false alarm are

characterized, respectively, by the following probabilities

D•- [1± ' , _) (6.2.1)

and

F=41-()J

where q2 is the ratio of the peak signal to the effective value of

noise at the input of the threshold device.

Being given the probability level of a false alarm, let us de-

termine from the last expression the relative threshold

1-arg WD(1-2F),

where argo (y) = x is a function inverse to y = 0(x). Having substi-

tuted this value into (6.2.1), we find the detection characteristic

2+* IffF41 (6.2.2)

The detection characteristics calculated by this formula using the

tables of the probability integral [126, 127] are presented in Fig.

6.2.2.

Having established the probability levels of detection and a

false alarm, let us determine from (6.2.2) the corresponding threshold

signal/noise ratio:

q,,-- arg4D(2D-)+ ' ar(D -(I -2F.
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Specifically, at D = 0.5, in view of the fact that argo(0) 0, 2

q:,, = P'T-arg 4) (1 - 2,),

and at D = 0.9

q, 3 = 1,2 8 2 ± ~ago(o - 2F).

The values of the threshold signal/noise ratios calculated by these

formulas are reduced in Table 6.2.1.

tD o., _ A A i:
r l J •/ .~ / 4 / Y1, I

Fig. 6.2.2. Detection characteristics of com-
pletely known sequences of signals.

Let us note that the square of the threshold signal/noise ratio

is equal to the duplicate distinguishability (visibility) factor of

the receiver (1281.

Table 6.2.1.

Dp
1: .11)" 0- ,,.. i to-- 1 10,1,. . 1 ! ,- 1 ,. 1* , o. ,,,.,0-

0.5 1.28212,321 3.090 3.719 4:265 4.753 5.199 5.612 5.996
0.9 2,56413.603 4,372 5,000 5.546 6,031 6,481 6,894 7,280

To calculate the sensitivity of the receiver, let us determine 22

the threshold energy of the input signal. For this purpose let us re-
place the radio-frequency filter (Fig 6.2.1, d) by a video frequency

filter equivalent to it. Let the use of the storage device together
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with this filter permit us to achieve a gain in signal/noise
ratio B compared to an optimum filter for a single pulsed signal (its

value is calculated for coherent cases in the three following

chapters).

According to the definition of this gain and relation
(1.2.11)

2, aq2 (6.2.3)
Et,,-- E-

a

where Elon is the total threshold energy of a single pulsed signal of

the sequence.

Specifically, if the shape of this pulsed signal is square-wave,

2 I

E13 -V 2 (6.2.4)

where Vl is amplitude and Pl is signal output.

Accordingly, the signal has threshold energy

au2n (6.2.5)

threshold output

2
P1au (6.2.6)

and threshold amplitude

Via= 2a qua. (6.2.7)

Since noise has the intensity

a!= IkTne

where k is a Boltzmann constant equal to 1.38 X 10-23 J/deg, T is the

absolute ambient temperature and n is the noise coefficient of the

receiver, then
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kTnq1 226
(6.2.8)

kTnq" (6.2.9)

and

Via !T (6.2.10)

Relations (6.2.8)- (6.2.10) describe receiver sensitivity quanti-

tatively. It follows from these relations that receiver sensitivity is

higher, the greater gain the storage device provides in signal/noise

ratio.

In the case of optimum reception of a square-wave sequence of N

radio pulse signals, B = N, due to which the maximum possible (poten-

tial) sensitivity of the receiver is characterized by the values

= --- 2, (6.2.11)

and

V..., t a- q- qg. (6.2.12)

6.3. Coherent Storage of Sequences of Pulsed Signals With Unknown
Initial Phase

1. Structure of Receiver

The initial phase of the pulsed signals of a sequence is usually

unknown since the precise distance from the radar station to the object

is unknown.

A block diagram of an optimum receiver (Fig. 1.2.6), in which

two cross-correlation devices controlled by two quadrature oscillations

are used, is constructed in item 2, section 1.2 for a signal with un-

known random phase. A combination of a coherent detector and video

frequency optimum filter for the envelope of the signal being received

may be used as the cross-correlation device. If a coherent sequence of 22
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pulsed signals is being received, then as shown in section 5.1, an op-
timum filter consists of one for a single pulsed signal (OFOS) and one

for the envelope of this sequence (OFOP). The optimum filter for a
single signal can be replaced by a radio-frequency optimum filter for a
single pulsed signal (ROFOS), having placed it in front of the coherent
detector.

ff bi

Fig. 6.3.1. Block diagrams of receivers for coherent
-* storage of signals with unknown initial phase.
*Key: (1) Radio-frequency optimum filter for singlepulsed signal; (2) Coherent detector; (3) Video fre-
* quency optimum filter for envelope of pulsed signal

sequence; (4) Square-law generator; (5) Threshold de-
vice; (6) Radio-frequency filter; (7) Video frequency
storage device; (8) Radio-frequency optimum filter for -
envelope of pulsed signal sequence; (9) Amplitude de-
tector; (10) Radio-frequency storage device.

Thus, an optimum receiver for a coherent sequence of pulsed sig-
nals with unknown initial phase consists of an ROFOS, two coherent
detectors controlled by square-law oscillations of the carrier fre-
quency, two OFOP, two square-law generators, an adder and a threshold

* device (Fig. 6.3.1, a).

If a nonideal storage device NU is used in this receiver instead

of an OFOP and a radio-frequency filter RF is used instead of an ROFOS,
the receiver (Fig. 6.3.1, b) will be nonoptimum, but will accomplish
coherent storage of sequences of pulsed signals with unknown initial

phase.

As was shown in section 1.6, a two-channel receiver (Fig. 6.3.1,

a) is completely equivalent to a single-channel receiver with amplitude

detetor(Fig 6..1, ). n siila fash otreivr(g.631
b)~~~~~~~~~~~~~~ iseuvfn otercie Fg .. ,d.Plse inlsae 22054X'



stored in receivers (Fig. 6.3.1, c and d) before the detector, i.e.,

on the radio frequency, which is very difficult to accomplish (see

section 5.2). Therefore, they are not used in practice and are intro-

duced to simplify calculation of the threshold signals.

2. Calculation of Detection Characteristics and Threshold Signals

The voltage at the output of an amplitude detector (Fig. 6.3.1,

c and d), which we shall regard as linear to be specific and which has

normalized characteristic u4 - U3, where U3 is the voltage amplitude

at its input, is distributed by the same law as this amplitude. Accord-

ingly, the indicated voltage is distributed upon reception of noise

alone by Rayleigh law:

W _ (U. =g
(u)~ U--.. exp 2- 11 (-,F'3 (6.3.1)

and upon reception of a signal-noise mixture by Rayleigh-Rice law (gen-

eralized Rayleigh law) [20, 129]:

2 2

-(u-)" ex (

where V3 is the signal amplitude at the detector input, ai is the

noise output (dispersion) at the indicated input and I0 (x) is a modi-

fied (video-altere) zero-order Bessel function of first kind [25].

Because of this, the probability of a false alarm is

F exp - du 4 e (6.3.3)

UO

where - and the probability of detection is 22

.e +DU~Vf )x I'( 24P-) du,-
u, (6.3.4)

"7i ( x2+Q 1%(qx) dx,= 1 xexp .

VTT

where q3 V3/03 is the signal/noise ratio.
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It follows from (6.3.3) that:

(6.3.5)

The probability of detection (6.3.4) can be calculated by means of the

tables [130] of the probability integral of Rayleigh-Rice distribution:

2

However, since not only the detection characteristics but threshold

signals as well must be calculated, determination of which is related

to the need to ca-ry out cumbersome and exhaustive calculations when
using the indicated tables, the method of approximate calculation of
the detecti-n characteristics and threshold signals is outlined below.

V. I dvnimovich [131] showed that the following asymptotic form-

ula is 4-alid

~_2L
~xexp ~ - . (sx) dx=- e 2 - ,

where

I . 4 -Ut +0.5_L /
u = z - s and 71 = ---- L s-- .-- v(!.

Because of this, (6.3.4) assumes the form

D Tl-(y). (6.3.6)

where 230

+I U 92.+0.5\.
U= --- + 6q33 (6.3.7)

and

A= (6.3.8)

The detection characteristics calculated by these formulas are

plotted in Fig. 6.3.2.
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Fig. 6.3.2. Detection characteristics of sequences
of signals with unknown initial phases.

Being given the probabilities of detection and a false alarm,

one can calculate the value of the threshold signal/noise ratios. Sub-

stituting the value y = -argo(2D - 1) into (6.3.7) and also using

(6.3.8), we find a fourth-power equation with respect to q3. Since

solution of the latter is complicated, we first find the first approx-

imation qst. To do this, it is sufficient to use only two terms on the

right side of (6.3.7), which leads to the quadratic equation

,&-: e)'q+oj-o,(6.3.9)

solution of which is as follows: 23:

I -! +V(I -y)- I
q,1=

To find the next approximation q= one should utilize the fact

that correction ....Aq.q--q . is very small compared to the first

approximation.

Then, using (6.3.7) and (6.3.9), it is easy to show that

1 , (21 + 5) 1Tq,, - 41, + 1.I5

qII 12q34
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It was established by calculation that this relative correction com-
prises tenths of a percent at D = 0.9. Its value decreases as the

probability level of a false alarm decreases. This is explained by

the increase in the value of the threshold signal/noise ratio, which

leads to a relative decrease of the older terms of the right side of

expression (6.3.7).

At D = 0.5, the correction is so small that it does not affect

the third sign. This is explained by the fact that in the given case

y = 0, due to which the value of u is small and the role of the last

two terms in expression (6.3.7) is insignificant.

Using the threshold signal/noise ratios calculated in this manner

(Table 6.3.1), the results of the previous chapter and formulas (6.2.5)-

-(6.2.12), it is easy to calculate the sensitivity of a receiver that

accomplishes coherent storage of a sequence of pulsed signals with un-

known initial phase. The only difference from the calculation made in

section 6.2 is in the different values of the threshold signal/noise

ratios.

-g Table 6.3.1.

:0 5'. 36i& 4:1 M J 4:09 5,1 ,8 59 6.36
- 0.9 4.89 5.47] 599 6,46 6,88 7.28 7.65

Let us calculate the gain in receiver sensitivity with co- 232

herent storage of a sequence of pulsed signals with unknown initial

phase compared to coherent storage of a completely known sequence. In

this case let us use the data of Tables 6.2.1 and 6.3.1. The

power gain decreases with a decrease of the probability level of a false
* alarm and at D - 0.9 is somewhat less than at D - 0.5 (Fig. 6.3.3).

This is explained by the fact that the threshold signal/noise ratios

increase with an increase of the level of detection probability and a

decrease of the false alarm probability. In this case generalized

Rayleigh law (6.3.2) approximates the normal probability distribution

[201, which is observed at the input of the threshold device of the
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receiver for coherent storage of a completely known sequence of pulsed
signals. Because of this, the difference between the threshold signals
becomes even less.

Fig. 6.3.3. Gain due to the fact that initial
phase of signals is unknown as function of false
alarm probability.

The latter can be explained differently by the fact that signal
suppression by noise in the amplitude detector is attenuated with an 233

increase of signal/noise ratio, due to which the threshold signals in
a receiver with this detector (Fig. 6.3.1, c and d) hardly differ from
the threshold signals in a receiver with coherent detector (Fig.
6.2.1, c and d).

However, the power gain of threshold signals is not great in the
most unfavorable case. This is explained by the fact that coherent
storage of pulsed signals is accomplished in both cases.

6.4. Coherent Storage of Sequences of Pulsed Signals Fluctuating in
Unison

1. Types of Signal Fluctuations

The radar signals being received are the result of reflection of
emitted signals from targets of one or another nature. In most cases
these targets have a very ccmplex structure. Moreover, if their over-
all dimensions are greater than wavelength, the signal being received
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can be regarded as the sum of the large number of oscillations reflec-
ted by the individual elements of the target. The latter, being added
in random phases, also determine the random nature of the signal being

received, which is manifested in fluctuations of its level.

If the received signal is the sum of a large number of independent
elementary reflected signals approximately identical in intensity, then,

in view of the central limiting theorem of probability theory [20, 132],
the signal being received has the statistical properties of normal
noise. Accordingly, the instantaneous values of the reflected signal

are distributed by normal law, phase is distributed by uniform law and

amplitude is distributed by Rayleigh law (6.3.1),where a3 = n2 is the
mean output (variance) of the signal.

Subsequently, it is important to note that due to this, the prob-
ability distribution of the square of the ratio of the fluctuating sig-
nal to noise is exponential:

W W) - p -- (6.4.1) 23

where p = n/a is the ratio of the effective values of signal and noise.

The reflected pulsed signals contained in the sequence can fluc-

tuate differently. They can be completely (or rigidly) correlated,

partially correlated and independent of each other (133, 134].

In the first case pulsed signals, although they fluctuate by ran-

dom law, they assume the same amplitude value identical for all signals
of a square-wave sequence. Examples of two realizations of a sequence
of pulsed signals fluctuating in this manner are presented in Fig.

6.4.1, a and b. These fluctuations are called harmonious and the se-
quence of pulsed signals is said to fluctuate in unison.

The direct opposite of harmonious fluctuations are independent 235

fluctuations. In this case the reflected signals in some repetition
periods are completely independent (Fig. 6.4.1, c) and fluctuate by
random law similar to normal noise. Therefore, these signals are

called noise-like or independently fluctuating signals.
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Fig. 6.4.1. Sequence of fluctuating signals.

The case of partially (incompletely) correlated fluctuating sig- 23

nals occupies the intermediate position between the two considered

cases.

Harmonious fluctuations of signals are naturally observed when the

mutual arrangement of the elements remains unchanged during irradiation
of the target. Accordingly, harmonious fluctuations are slow fluctua-

tions. Independent fluctuations occur when the mutual arrangement of

the elements of the irradiated target vary strongly during the repeti-

tion period of the signal. Therefore, these fluctuations are som~etimes

called rapid fluctuations. They occur on very short waves, at low rep-

etition rate and with rapid banks of the irradiated target.

2. Structure of Radio Receiver

A coherent sequence of signals fluctuating in unison occupies

the intermediate position between a regular, completely known sequence
of pulsed signals and a sequence of signals fluctuating independently

from pulse to pulse.

The considered sequence is essentially a regular sequence of

pulsed signals with unknown initial phase and relative amplitude. Since

the shape of this sequence is usually known, knowledge of the amplitude
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and the initial phase of one of the radio pulses (for example, of the
first) of this sequence transforms it to a completely known sequence
of pulsed signals.

Therefore, this sequence of pulsed signals may be regarded as a
0 single radio pulse signal of very complex shape with unknown amplitude

and initial phase. The latter considerably facilitates design of re- 23
ceivers for coherent storage of the indicated sequence.

It was shown in item 2, section 1.2 that an optimum receiver for
a signal with unknown, unmeasured initial phase and amplitude has the
same structure as in this case when only the initial phase of the sig-
nal is unknown. Due to this, receivers designed for coherent storage
of a sequence of signals fluctuating in unison fully conform to receiv-
ers for coherent storage of a sequence of pulsed signals with unknownI initial phase (Fig. 6.3.1).

3. Calculation of Detection Characteristics and Threshold Signals

*Since the signal at both the receiver input (Fig. 6.3.1, b) and

at the input of the amplitude detector has random amplitude and random2
initial phase, it is similar to noise in its statistical properties
with Rayleigh distribution of amplitudes and uniform distribution of

initial phases.

Since the signal and noise are st.*itsatically r~utually independent
and Gaussian at the detector input, their outputs are added. Therefore,
the instantaneous value of the voltage of the signal/noise mixture at
the output of a linear amplitude detector with normalized characteris-
tic* is distributed by Rayleigh law:

The normalized characteristic of a linear amplitude detector has the
form

where U4 is the instantaneous value of output voltage and U3 is the
voltage amplitude at the input.
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where2 is the output (variance) of the signal at the detector
3wsherou pu

input.

Because of this, the probability of a false alarm is 237
j ,, i -,(6.4.2)

-H'--exp I du-e , ( e.2

and the probability of detection is

LI, Ui uD = -- --- expdu
2 7+ - d1 - (6.4.3)

--exp -

where Ps==- - is the signal/noise ratio at the detector input.

It follows from the last two equalities that

+
D -F (6.4.4)

The characteristic feature of the detection characteristics calculated

by this formula (Fig. 6.4.2) consists in the fact that the detection

probability increases at first rapidly with an increase of signal/noise

ratio and this increase slows down after values of D = 0.5-0.6 are
reached and then Lacomes very slow.

This type of detection characteristic is typical during reception

of fluctuating signals and is explained by the fact that the Rayleigh

probability distribution of a signal/noise mixture at the detector out-

put has comparatively long "tails."

Let us determine from (6.4.4) the threshold signal/noise ratio:

Pon - - - 1 •(6.4.5)

Consideration of Table 6.4.1 with the values of threshold signal/
noise ratios shows that the threshold ratios at D - 0.9 are 2.6-2.7

times greater than those at D - 0.5. This is the result of a special
type of detection characteristic.
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Table 6.4.1. 23

0,5 2.99 3.51 3,95 4,35 4,72 5XC6 5,3S
0,9 8.03_ 9.28 I0, 9 11.39 12:31 13.17 13.99

Using these threshold ratios, formulas (6.2.5)-(6.2.12) and the
results of the following chapters, it is easy to calculate the sensi-
tivity of a receiver for coherent storage of signals fluctuating in

* unison.

.7.7f

Fig. 6.4.2. Detection characteristics of se-
quences of signals fluctuating in unison.

6.5. Coherent Storage of Pulsed Signals with Unknown Doppler Frequency
Shift

* 1. A Multichannel System

Coherent storage of pulsed signals can be accomplished comipara-
tively easily if their carrier frequency is previously known. In radar

this corresponds to reception of signals reflected from fixed targets. 23
However, the targets that are of greatest interest to radar (missiles,

aircraft and so on) are most frequently moving. The signals reflected

from these targets, due to the Doppler phenomenon, have a carrier fre-
quency wo differing by Doppler frequency n from the carrier frequency

WO of the sounding pulses: 
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W"' W, - O' W, -4-(6.5.1)

where yr is the radial speed of the target with respect to the radar

system arld c is the speed of radio wave propagation.

If radial speed were previously known, it would be sufficient to.1 shift the frequency of the reference oscillations in the receivers
(Fig. 6.2.1, d and 6.3.1, b) by the Doppler frequency for coherent

* storage of signals reflected from this target.

However, the radial speed of a target must usually be determined
during (or after) its detection. Therefore, the Doppler frequency is

previously unknown.

To accomplish coherent storage of signals from moving targets,

there are three possibilities which are considered below.

The first includes design of a multichannel receiver. Each

ii channel corresponds to one of the comparatively narrow sections of the

spectrum of anticipated Doppler frequencies. The combination of all

its channels completely overlaps the spectrum of expected Doppler

frequencies. The k-th channel of this receiver is made according to

a block diagram (Fig. 6.5.1) that differs from the receiver (Fig.

6.3.1, b) by the presence of a Doppler frequency generator (GChD)

and a mixer SM of the emitted frequency wo and Doppler frequency n.
A phase-reversing circuit (FV) changes the phase of one of the ref er-

ence oscillations by 900.

The Doppler frequency for a given channel is selected by a fixed

frequency:

.. + (k + 4-AD,

where 40l is the width of the bandpass of each channel, Q~K 24C

and nM14H are the maximum and minimum expected Doppler frequencies,

resectvel, Mis the number of channels and k is an integer lying in

the range fro_0to__1



The latter expression is valid on the assumption that the refer-

ence oscillations of adjacent channels differ in frequency by the same

value AQ.

The greater the number of channels and the narrower their band-

pass is, the more precisely coherent storage of signals impinging in

the given receiver channels is accomplished.

(1) (2) (3).

7.(.

0)

Fig. 6.5.1. Block diagram of receiver for coher-
ent storage of signals reflected from moving targets.
Fey: (1) Coherent detector; (2) Video frequency
storage device; (3) Square-law generator; (4) Radio-
frequency filter; (5) Phase-shifting circuit; (6)
Mixer; (7) Doppler frequency generator; (8) Threshold
device.

Let us estimate the required number of receiver channels. If the
frequency of the signal being stored in the k-th channel differs by

value AF from the median frequency of this channel, then this leads to
the fact that the pulse amplitude at the output of a coherent detector
will vary during storage. Let the initial phase of the signal being

received be equal to zero at the beginning of storage and let the pulse
amplitude at the output of the coherent detector be VH. The signal re-

ceived at the output of the coherent detector at the end of storage
will have the amplitude VK - Vmcos2wAftH, where tH is the signal stor-
age time. If the decrease of pulse amplitude at the output of a coher-

ent detector by a factor of /T is regarded as permissible, then

cos2Aft.n < , hence, " it follows that I af I

The maximum absolute value of the frequency difference Af is
l equal to half the width of the channel bandpass AF/2 - An/4r. 241

Therefore,

217



FI = 0.25. (6.5.2)

The signal storage time cannot be greater than the time of its

existence (this time is usually limited by the time during which the

target moves at constant radial velocity).

Specifically, if a sequence of N pulsed signals with repetition
quasi-period T is received, we have tH < NT. Only the active number of

pulsed signals N. is stored with exponential-weight storage (see

1: (5.4.8)) and

t.<NaT. (6.5.3)

We will subsequently keep this case in mind. If it is required to con-
vert to the case of ideal storage, it is sufficient to assume that

Na = N.

According to (6.5.2) and (6.5.3), the required number of channels

is

M -- F..,.- , 4NT (F,, - F,,,,).

If the targets subject to detection can both come closer and

move away with identical range of velocities, due to which FMHH=

-FM8KFC, then

S8NTF.. -
16N.vrm.%,T

where A is wavelength.

If we take as an example vrMaKc = 300 m/s, T = 1 ms, X = 1 meter

and Na - 20, then we have M - 96 channels.

If the wavelength is shortened, the active number of pulses be-

ing stored and the length of the repetition period of the system is

increased and the range of velocities of the targets being detected is

broadened, the number of receiver channels required for coherent stor-

age of signals increases even further.
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Thus, the number of channels of a receiver that accomplishes co-
herent storage of signals from rapidly mnoving targets reaches many tens 242

and even hundreds.* In this case the feasibility of realizing this re-

ceiver may be doubtful.

2. Single-Channel Systems

The-second possibility of coherent storage of signals from mov-

ing targets consists in searching for the target by radial velocity and

is realized by a receiver (Fig. 6.5.1) in which the GChD (Doppler fre-
quency generator] is retuned over the entire range of expected Doppler

frequencies.

The described receiver requires rather long time to retune the

GChD for detection of the signals and to store these signals;** There-

fore, it cannot be used for tactical concepts in systems for detection

of rapidly moving targets.

Finally, let us consider the third possibility of coherent stor-

age of signals from moving targets. It is realized by means of a single-

channel system in which the pulsed signals with different Doppler fre-
quency shifts are stored simultaneously and coherently. its basic com-

ponent is the recirculator (Fig. 6.5.2).

Sone decrease of the volume of the equipment is possible when using
sequential (two-stage) detection of signals (135]. In this case prelim-
inary detection of signals is carried out with high probability of a
false alarm and rough determination of their frequency during the first
stage by using a set of a small number of comparatively wideband filters
that encompass the entire spectrum of the expected Doppler frequencies.
During the second stage, the sections of the spectrum in which the pres-
ence of signals is assumed from the results of the first stage are anal-
yzed carefully by means of a small comb of narrowband filters.

The method of sequential (multistage) search has been suggested to sig-
nificantly reduce the signal detection time (136, 137]. In this case a
search is made for the signal in several stages (in two stages in the
simplest case). During the first stage, the signal is d~tected with high
probability of a false alarm by rapid retuning of a comparatively wide-
band filter over the entire spectrum of anticipated Doppler frequencies.
in this case its frequency is estimated roughly. During the next stage
this section of the spectrum in which the presence of a signal is sus-
pected from the results of the first stage is subjected to more careful
analysis by retuning a sufficiently rarrowband filter and to determine
the presence of this signal with low probability of a false alarm.
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a) b) ~t

...I..1

Fig. 6.5.2. Block diagrams of recirculators-coher-
ent signal storage devices.
Key: (1) Filter; (2) Flip-flop; (3) Mixer; (4) High-
frequency generator.

Let us explain its operating principle on the simplest example
when a sinusoidal oscillation ul(t) = Ucoswt, whose frequency we assume

to be initially known, is fed to the input. The oscillation u3(t) -
= mUcosw(t - T) is fed to the second input of the adder (Fig. 6.5.2, a)
as a result of circulation through the feedback circuit. It will be in2*
phase with oscillation ul(t) only if O m T", where n is an integer.
The oscillation u2(t) = (1 + m)Ucoswt is formed at the output after co-
phasal addition of the two oscillations in the adder. The amplitude of
the output voltage will be 1 + m + m2 times greater than that of the
input voltage in the case of two-stage circulation, it will increase
1+ mk+ times in the case of k circulations and so on.

1 - m

If m - 1 is fulfilled, then the amplitude of the output oscilla-
tion will increase k + 1 times as a result of k circulations. Coherent
storage of the input oscillation is also included in this.

The oscillations of the other frequency w # 2wn/T will not be

added to the phase shifts equal to wT, 2wT, 3T and so on. These phase 244
shifts can be cumpensated for by placing a phase shifter by angle

X(wT)-20R( y) (Fig. 6.5.2, b) in the feedback circuit of the

recirculator.
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If the frequency of the input oscillation is previously unknown,

its coherent storage can be achieved by changing the angle of rotation

of the phase of the phase shifter by the law

Z~)=7 M (6.5.4)

which is equivalent to shifting the frequency of the circulating oscil-

lation by the value ii-d~ (Fig. 6.5.2, c). In this case the angle

of rotation of phase varies smoothly during the signal delay time T in

*1 the feedback circuit and assumes all possible values from zero (at t

= 0) to it (at t = T/2) and further to 21r (at t = T). Because of this,

regardless of what the value of frequency of the oscillation being

stored is, the phases of the oscillations to be stored will coincide at

one of the moments of time during length T, which also determines their

coherent storage.

Coherent storage occurs at the moment of time during which the

phase rotation angle (6.5.4) coincides with accuracy up to integer 2vt

with the phase delay angle of the oscillation occurring due to its de-

lay by time T in the feedback circuit. Therefore, the condition for

coherent storage in this case is as follows:

where ni is an integer.

Accordingly, coherent storage of the frequency oscillation w oc-

c u r s a t m o m e n t s o f t i m e ( T - 2 n ) 
6 5 5

Thus, the frequency of-the input oscillation is linearly related

to the moment the maximum output oscillation is reached. By measuring

this moment of time: one can measure the frequency of the input oscil-

j .lation. Single-channel spectrum analyzers for simultaneous analysis are 24

also based on this principle (138-140].

if radio pulse. of length To with repetition period T and with

unknown frequency w rather than continuous harmonic oscillations are fed



to the input of the recirculator, then for coherent storage of them one

must change the phase of the phase shifter of the recirculator by the

law

Z(t= (656)

or shift the frequency of the circulating pulses by the value

2:t (6.5.7)
.4

varies smoothly during its duration in the range whose width is equal

to 2r. Because of this, regardless of the value of the carrier fre-

quency of the radio pulses to be stored, their phases coincide at one
of the moments of time during their duration. This also leads to co-

herent storage of them. In this case the moments of coherent storage,

according to (6.5.5), carry information about the frequency of the

radio pulses to be stored.

When receiving radar signals reflected from moving targets, their

frequency is described by (6.5.1), due to which condition (6.5.5) as-

sumes the form

t(Q) (a.T + OT-' 2,) (T + n,), (6.5.8)

where n2 is an integer. It was assumed in this case that the repeti-

tion period is a multiple of the period To = 2w/w 0 of the carrier os-
cillation. Specifically, when receiving a signal from a fixed target
(n - 0),

t (o)= = -(6.5.9)

Accordingly, coherent storage of signals reflected from a fixed

target, regardless of the moment of their arrival, always occurs at

moments that are a multiple of the duration of the pulses being

received.

This is easy to understand if one takes into account that the de- 246

lay of these pulses by T changes their phase by a value that is a
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multiple of 21 and their coherent storage may occur only at those mo-

ments of times during which the phase shift (6.5.6) is a iltiple of

2'. By setting this value equal to (6.5.6), we find (6.5.9).

It follows from (6.5.8) and (6.5.9) that the time shift of the

maximum output signal determined by coherent storage, due to the Dop-

pler frequency shift of the input sighal

t(Q)- t(0 =q;(6.5.10)

is proportional to the value of this shift.

Let us consider coherent storage of a sequence of N pulsed sig-

nals with unknown Doppler frequency shift
N-f

U. () Y V(t-kU) cms(eat
h =O

where V0 (t - kT) is the law of amplitude variation of the k-th pulse in

the sequence, w is described by expression (6.5.1) and a is the initial

phase.

Let us assume that the Doppler frequency is much less than the

spectral width of the pulsed signal: 1Is <<2r/T0 , where To is the
length of this signal. This condition is easily transformed to the

following condition: IvrITO <<0.5X0 , i.e., variation of the distance

between the radar station and the target during the length of the pulse

being received is much less than half the wavelength. This condition

is usually fulfilled in practice, with the exception of cases of very

fast targets, superlong pulses and very short wavelengths.

After passing through the prestorage filter F1 (Fig. 6.5.2, c),

the sequence of pulsed signals assumes the form

o1 (t= VVQ-hT)CO.(Sg+).

The voltage at the output of the recirculator is the sum of the voltage

at its input and of the voltages determined by one, two and so on cir-

culations of the input voltage. During circulation the oscillations 247

are delayed each time by time T, the frequency is shifted by Aw and are
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filtered by means of filter F2. Let us assume in the first approxima-
tion that a signal pulse having carrier frequencies w + Aw, W + 2Aw, ...,

+ (N - 1)6w, respectively, during the first N-1 circulations is

transmitted by filter F2 without any distortions and that there is the

carrier frequency w + NAw during the N-th circulation, which lies out-
side the bandpass of filter F2 and is completely filtered by it. Ac-

cordingly, the bandpass of the feedback circuit of the recirculator is
approximately N - 1 times greater in the considered case than in an
ordinary recirculator.

The output voltage during the (k + l)-th period (kT < t < (k +1)T)

is the sum of the following voltages:

a) existing at the input during the same time,

b) being fed to the input one period earlier (i.e., during the
k-th period) and subjected to one circulation through the feedback

circuit,

c) being fed to the input during the (k-l)-th period and making
two circulations and so on (Fig. 6.5.3, a).

Due to the assumption made above about the band of filter F2, the
number of these terms is equal to k + 1 at 0 < k < N - 1 and 2N - k - 1

at N < k < 2(N - 1), since only N pulsed signals are fed to the input

of the recirculator and each of them circulates through the feedback

circuit only N - 1 times.

It is easy to ascertain that with single circulation of oscilla-

tion V1 (t)cos(S t + a), the following oz:illation is formed

V (1 T u.I('- T)+ +Mf-

=Vt-T)eM[(0+ A)t--OT+a

with double circulation,

V,(t- 2) -.) 2-T -,AT + a.

with triple circulation,

V. (-f-iT) Cos [(H-m-) t-mwT- T(M-f) AsT+]

224



24,

V7.1 I A~ft 2 ~ +36 .746f
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Fig. 6.5.3. Time variation of amplitudes of recirculator
responses to i-th pulse (iU 1-5) of input oscillation
(a) and amplitudes of their sum in the absence (b) and
presence (c) of Doppler frequency shift.

24'
with m-tuple circulation,

V. (i - 37) cas [(ca + Ulm.) t - 3.7'- 3deT + al,

Because of this, the voltage at the output of the recirculator (Fig.
6.5.3, b and c) is

A'-r h248

V,()= V, U - kU) Cos [(s+ Me) -

b=O m-

M M 2 -1e) 2 a1+ )

N-i N

X CK[(w + MAtmmT. rrnIAZ +
In*N f

For correct operation of the circuit, the following condition must be 249
fulfilled

SwT - 2wz. (6.5.11)
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where n is an integer.

Therefore, the previous equality assumes the form

V MI) Re ifV, (t - kT) +

2 (N-1I V -I M=U

+ 'V VIt-kT) N' e ' 
em.

k=N J

Adding these geometric progressions, we find

k +

M-1 sin -- /- (At - WT)
(t) W V, (t - kr)

k-O sin 2 (Awt - T)

;K<cos [(+T -- ,r +

2N- -- I
2 (N-1) sin 2 (AWt - .T)

+ V (t-k) XE =a sin (Awl - W T)

Thus, the output voltage is a sequence of 2N - 1 pulses and the

k-th pulse (0 < k < N - 1) of this sequence has the amplitude

I k + I

Vk(t) =V(t- )sin -2----A-'- wT (6.5.12)
sn - (Aw - w7)

which is the product of the amlitude of the k-th pulse at the input and

of the absolute value of an ideal comb function (see (5.1.5)) repeated

with period 2w/Aw = To equal to the length of the pulsed signals being

received. The latter reaches maximum values equal to k + 1 at Awt - 25,

- wT - 2wn 3, where n3 is an integer, i.e., at moments of time that

satisfy the condition t kT+(n4 +FAt)%D, where n 4 is an integer an:

o < n4 < T/?o. These maximum values are repeated with a period equal to

the length of the pulsed signals being received.

Let us assume that these signals have square-law shape and arriveUat one of the moments of time lagging behind the beginning of the (k +
+ l)-th period by the time that is a multiple of integer
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To; , so that their amplitude varies by the law

V*(t)=V, at kT-j-n,<t<kT+(n,- 1) ;oI
V.(t) =0 at other values of t, I

where k and n5 are integers (and OK<<N-I an&; 0< n,<

If the prestorage filter F1 is optimum for these radio pulses

with carrier frequency 0, then due to its small frequency difference

with respect to the frequency of the signals being received, the amli-

tude at its output will vary by essentially the same triangular law as

in the absence of a frequency difference:

a, (V - U) -= V Yt - AT- n,,%)

at AT +nsot kT + (no +1)), I
V, (t - k) = V. [kT + (n. + 2) %. - tJ I

at kT + (n, + 1) %. < t<kT-Hn,2) .,
V, (t - t) = 0 o

at other values of t.

Because of this, amplitude (6.5.12) of the output pulse reaches

maximum values at those moments of time which correspond to the maxi-

mums of the absolute value of an ideal comb function lying in the range

of the pulse length at the input of the recirculator.

At F = 0, this maximum is the only one and is observed at the 251

moment t=AT+(ns+1) o, coinciding with the mid-point of the pulse

at the input of the recirculator, and has the value

V2,,(k) - (k+ 1) Vo o. C6.5.13)

If there is a Doppler frequency shift, the amplitude of the k-th output

pulse has two maximum values at the following moments of time

t, AT + (n, + TF,),
and at Fa>o4,-AT + (., ++ T4 +
or t,kT+.+ 1 +TF '1
and at Fj<O.

The more general case is considered below.
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The values of these maximums are as follows:

V2M, (k) - (A + I) Voo.TFA a

and V2M 2 (k) =(k+ 1) Vo(I 0 TFa) ( atF

at
V-2m, () = (kI+ 1) V.% (I T I I)

and 'at Fa<O.
S V2, () - (k + 1) V..T I F1 I

The highest of them is that which is closer to moment kT+._ of the

maximum input pulse, i.e., the first maximum if F/2 < FA < F or -(F/2)<

< FA < 0 and the first maximum if 0 < FA < F/2 or -F < FA < -(F/2).

According to the property of an ideal comb function, each of the

maximums of the k-th output pulse has the length (from the first zeros)

%(k) k + at O<k<N-!

and a (6.5.14)

;(k)-2% at V<k<2(N-),

i.e., it is (k + 1) and (2N - k - 1) times less, respectively, than the 25

pulse length at the input of the recirculator (Fig. 6.5.3, b and c).

Specifically, at k = N - 1 the pulse has the maximum possible amplitude

V, (,V);= N,,(I - I Fjj T) at- F<Fp < F

and

V, (N) NV,-FAt7 at F < JF( < F (6.5.15)Tl
and minimum length

2% (6.5.16)

If there is no Doppler frequency shift (FA - 0), formula (6.5.15) co-

incides with (5.3.1) that describes the peak value of the signal at the

output of an optimum filter for a sequence of N pulsed signals.

It follows from (6.5.15) that the relative decrease of the peak
value of the output signal due to the Doppler frequency shift varies

by piecewise-linear law:
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V2() '-Vi-FT at (< F.I_
V.,- (N) 2

V,(N) a < F, <F (6.5.17)

and in the most unfavorable case (IF,[T = 0.5) comprises 0.5 (i.e.,

6 dB). Assuming that the Doppler shift is random and that it has uni-

form probability distribution in the range (-F, F), we find that the

average decrease of amplitude is 0.75 (i.e., 2.5 dB). This decrease

can be made even less by increasing n times the shift frequency &w in

the feedback circuit. In this case 2n maximum values following at time

intervals TO/n rather than two maximum values are observed during pulse

length 2T0. One of them lies near the greatest maximum of the output
signal in the absence of a Doppler shift and hardly differs from it in

value. However, this requires broadening of the bandpass of the feed-

back circuit of the recirculator n-fold, which cannot be accomplished

in practice due to the absence of sufficiently wideband delay lines.

The noise in the considered system (Fig. 6.5.2, c) is stored by

the same law as in an ordinary coherent pulsed signal storage device
with known frequency or in an optimum filter for a sequence of these

signals (see item 2, section 5.3). This is explained by the fact that

due to the assumption of the small Doppler shift compared to the spec-

tral width of the signals being received, the prestorage optimum fil-

ter for a single pulse with unshifted carrier frequency accomplishes

essentially optimum intraperiod processing of the received signals hav-

ing just as small a Doppler shift of the carrier frequency [15]. Linear

phase modulation (or frequency modulation) of noise during each repeti-

tion period, which occurs during circulation through the feedback cir-

cuit, does not alter their random nature and accordingly the law of

their storage. Therefore, the noise output at the output of the con-

sidered system is the same as at the output of an optimum filter for a

sequence of pulsed signals (see (5.3.5)).

Consequently, the loss in the signal/noise ratio in respect to

power, conditioned by the Doppler shift of frequently, is equal to

the square of a lessening of signal amplitude (6.5.17) and in the

worst case comprises 6 dB, and on the average 2.5 dB.

The case when the arrival time of pulsed signals is known and

coincides with the moment of passage through zero or a value that is a

multiple of 2A of phase shift (6.5.6) created in the feedback circuit
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by a phase shifter was considered above. This assumption usually does

not occur. In this case the ampl'itude of the output pulse even with

-,;nshif ted carrier frequency (Fig. 6.5.4, b) may vary due to

noncoincidence of the moment of the maximum input signal with the moment

of passage of a value that is a multiple of 2v (Fig. 6.5.4, a) through

phase (6.5.6).

In the case of a Doppler frequency shift of the output pulse, it

may increase to the maximum possible value and it may also decrease

(Fig. 6.5.4, c). In this case the maximum and mean values of losses

have the same values as before.

Thus, both the range to the target (with accuracy up to the in-

terval corresponding to the pulse length To and its speed (by the shift
of this maximum with respect to the moment that is a multiple of the

indicated length)* can be determined by the position of the maximum out-

put signal. These signal parameters can be measured on a scope with
brightness mark, linear horizontal scanning with repetition period of

the system and linear vertical scanning with period equal to signal
length. One can use a two-scale scope with circular scanning for this

purpose. The harmonic oscillation of the shifting frequency Aw should

be used to create rapid scanning and the harmonic oscillation found by
dividing the frequency of the first oscillation and having a period

equal to the repetition period of the system should be used to create

slow scanning. The scope with fast scanning is used to measure speed
and the one with slow scanning is used to measure range. To increase

the accuracy of the latter, one can make the range indicator two-scale.

We note that due to the fact that usually Aw <<w, then it is

practically difficult to convert the frequency in the feedback circuit

of the recirculator by the diagram shown in Fig. 6.5.2, C. Therefore,
double frequency conversion is employed (Fig. 6.5.5). The frequency of

the first heterodyne fl is selected from the condition of good filtra-

We note that the radial velocity of the target is determined clearly
only with clear measurement of the Doppler frequency shift, which is
possible in the given circuit only atF1 < F (154].
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tion of undesirable combination frecuencies on the intermediate frequency"

f - fl. The frequency of the second heterodyne differs from that of the

first by the value of the required signal frequency shift. The

difference frequency is determined after the first conversion and the

total frequency is determined after the second: f - fl + f2 = f - fl +

+ (fl + Af) = f + Af. The APCh [intermediate-frequency amplitude] of
one of the heterodynes is used to maintain equality (6.5.11), required

for correct operation of the circuit.

* NV jL 100%;I:

Fig. 6.5.4. Time variation of pulse amplitudes at input (a)
and output with and without Doppler frequency shift (b-F =
= 0; C-FA = 0.25 F). Here i is an arbitrary integer (0 <

< T/T0 - 8).

(1) (2)

Fig. 6.5.5. Block diagram of frequency
shift device by value f.
Key: (1) Frequency mixer; (2) Filter;
(3) High-frequency generator.

In conclusion let us again emphasize that realization of this
system requires considerable broadening of the bandpass of the recir-
culator delay line, which may be difficult in some cases and may re-
quire the use of a multichannel system. If the indicated difficulty
can be overcome, then the considered single-channel circuit should be
preferable to a system with large number of channls.
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CHAPTER VII. 25(

A COHERENT SINGLE-STAGE STORAGE DEVICE

7.1. CHARACTERISTICS OF STORAGE DEVICE

It is shown in item 1, section 5.4 that the simplest practical
approximation of an optimum filter for a sequence of video pulse sig-
nals is the combination of a prestorage filter and recirculator. The
advantage provided by this combination is calculated in the same sec-
tion in the case when an optimum filter for a single pulsed signal is
used as the prestorage filter while the feedback circuit of the recir-
culator has broad bandpass without limit. The latter assumption is
usually not fulfilled in practice. Moreover, the radio-frequency part
of the coherent receiver that includes a coherent detector and that has
good selectivity is in front of signal storage. Because of this, the
use of an additional prestorage optimum filter for a single pulsed sig-

nal is not feasible.

Fig. 7.1.1. Block diagram of
single storage device.
Key: (1) Filter
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In this regard let us consider a single storage device (Fig.

7.1.1) in the form of a combination of a prestorage filter Fl and a

recirculator whose feedback circuit consists of an attenuator with

transfer coefficient m, delay device by time t3 and filter F2 that 25"

takes into account the nonuniform frequency characteristic of the

feedback circuit (and mainly of the delay device). This storage device

is an integral part of a coherent receiver (Fig. 6.2.1, d or Fig.

6.3.1, b).

The purpose of this consideration is to determine the gain of

signal/noise ratio provided by this storage device compared to an opti-

mum filter for a single signal. This permits one to calculate the

value of the threshold signals upon storage by means of a single coher-

ent storage device using the relations found in the previous chapter.

Let us assume that frequency filters Fj and F2 have bell-shaped

frequency and linear phase characteristics, i.e., they have the trans-

fer function

M. ('-exp (_ --- - ',Y.,-'.,).(.ii

where Tl,4 is the length of the pulsed responses of these filters,
2 1

tl,4 is the delay time of the oscillations in them, --.

and d is the level of reading the response time of the filter and of

its bandpass (and signal length below).

To simplify notation of the subsequent expressions, let us dis-

regard the delay of oscillations during their passage through filter

Fl, i.e., let us assume that tI - 0. The permissibility of this is ob-

vious. With the exception of section 7.5, in which the more general

case is considered, the delay time of oscillations in the recirculator

feedback circuit is equal to the repetition quasi-period of pulsed sig-

nals, i.e, t3 + t4 - T.

Let us assume that the signal is a square-wave sequence of bell- .1
shaped video pulses.
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Let us judge the validity of the assumptions made above.

The validity of a bell approximation for the frequency character-
istic of prestorage filter Fl raises no doubts since this filter modu-
lates the radio-frequency part of the coherent receiver preceding the
storage device, which is usually multicircuit, due to which its fre- 258
quency characteristic is very close to bell-shaped.

Bell approximation of the frequency characteristic is less pre-
cise, but acceptable for the filter in the feedback circuit since the
oscillations are usually delayed by radio frequency and are accompanied

by considerable attenuation (see item 1, section 11.1). Therefore,
* four or five selective amplifiers [141], whose resulting frequency char-

acteristic can approximately be regarded as bell, is used in the indi-
* cated circuit. This is also indicated by experimental data.

Bell approximation of the shape of real pulsed signals is no
less precise than approximation by square-wave pulses, especially in
the case of their short length. The fact that a bell pulse is theo-
retically extended in time from -- to -is not significant since it is

* assumed that the stored sequence of pulsed signals has a very high on-
off time ratio.

With regard to the square-wave shape of the envelope of the se-
quence of pulsed signals, the shape of this sequence can be selected
as simpler due to the noncritical structure of the optimum filter to
changes in the shape of the video signal (item 2, section 2.4) and the
congruence of the optimum filter for a video signal and pulse sequence
with envelope of the same shape (item 3, section 5.1). other shapes of

the envelope of the sequence can easily be recalculated to an equiva-

lent square-wave shape.

The above assumptions on the form of the frequency characteris-

tics of filters and the shape of the pulsed signals considerably sim-
plify investigation of the storage of pulsed signals since in this case

it becomes possible to make use of the fact that bell pulses, passing

through filters with bell frequency characteristics, do not change

their shape (142.]
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Fig. 7. 1 12. Amplitude-frequency character-
istic of single storage device.

The considered storage device obviously has the transfer function 258

[143]

RK, (o)
I --,nK, (a) e- '' I -mK,(.) e- OT  (7.1.2)

and the amplitude-frequency characteristic 259

K (a) K.-2, + (ac (7.1.3)

which is a comb characteristic (Fig. 7.1.2) and reaches maximum values

at frequencies of = ls2 that are multiples of the repetition rate Q

27/T (Fig. 7.1.3)
K, (12)

x - .- (7.1.4)

and reaches minimum values on frequencies of w (1 + 0.5)0

K o () K[(1+ ) "I- ), .[( +

Let us determine the bandpass 6fl1 of the l-th spike of the comb

characteristic (7.1.3) at the level of i/ . Assuming that the band- 260

passes of filters Fl and F2 are considerably broader than that of the
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spike, due to which

we determined from the condition

K (Ia Q J ,

the relative bandpass of the l-th spike (Fig. 7.1.4): 261

'IF ( ' =" CO [ mK, (112)12
F - - - arcc - 2mK,02) (7,1.5)

which makes sense only at 0.172 < mK2(19) < 1. Specifically, if m. =

= mK2(10) is sufficiently close to 1, then using formulas

COsxP1--- and V,

it is easy to find from (7.1.5) 262

F () 2 1 - mK, (1) (7.1.6)
F x T~K(~

At mK2(la) = 0.5, 0.7 and 0.8, this formula yields errors of 7.8, 3

and 0.7 percent, respectively.

Substituting w = lI + v, where fvf < &a,, into (7.1.3) and using

(7.1.4), (7.1.6) and cos T - 1 - 1/2(vT) 2 , we find

K---2-1-- (7.1.7)X (W) 2v+ )

Accordingly, the amplitude-frequency characteristic of the stor-

age device (Fig. 7.1.5, curve 1) coincides at small frequency differ-

ences with respect to the nearest maximum to the amplitude-frequency

characteristic of a resonance circuit with the same bandpass.

It follows from (7.1.4)-(7.1.6) that filter Fl affects only the

maximum value of the comb characteristic of the storage device, while

filter F2 affects both the value of these maximums and the bandpass of

its spikes.
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Fig. 7.1.3. Upper envelopes of amplitude-frequency
characteristic of single storage device.

It is easy to see that the components of the storage device per- 263

form the following linear operations on the signal:

1) the convolution operation Cp, i.e., the operation of the ef-

fect of a filter with response time Tp on a pulse v(t, T) of length T:

C,o(.)=(t , (7.1.8)

where

V (t elp 2%c2(7.1.9)

2) delay operation by time T:

rv(t) -v(t-T), (7.1.10)

3) attenuation operation by a factor of m:

Au it) -mv(t).7. )
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, Fig. 7.1.4. Dependence of relative bandpass of
i l-th spike of amplitude-frequency characteristic

on parameter p.

' .4,91 toa626

0.U -

4 4 4It

!5 ,.00 .o5 fTr
Fig. 7.1.5. Shape of spikes of amplitude--re-
quency characteristics of single (1), double (2)
and two-stage storage devices at M -5 (3).

Because of this, the pulse characteristic of the storage device, 263
i.e., its response to a single pulse 6(t) / cv(t, 0), is
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h, ()= C, V AC, rot TCV (t, 0) =
k .O (7 .1 .12)=;1C , M1,.. V (t- kT, -, ,2

k__O

Thus, the pulse characteristic of the storage device consists of

an infinitely large number of bell-shaped pulses and the k-th pulse

reaches a maximum at moment t = kT and has the amplitude (Fig. 7.1.6, a)

,()=V i-cm v(O, V (7.1.13)
YV2crn"

"- 1r + kr1
2

and length (Fig. 7.1.6, b)

(7.1.14)

where n=-±--L is the ratio of the bandpass of the prestorage filter 264

and the feedback circuit of the recirculator.

Thus, the restriction of the bandpass of the recirculator feed-

back circuit leads to a more rapid than exponential decrease of the

maximum pulse characteristic of the storage device and to the fact that

the lengths of its pulse components increase with an increase of the

ordinal number of these pulses.

7.2. Signal Storage 265

It follows from the foregoing that if a square-wave sequence of

N bell pulsed signals of amplitude VO and length To act on the input of
the system:

v. ( ) V. v (1 + IT, S.)
Iwo

we find at the output of the prestorage filter

1-0

and at the output of the storage system
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Fig. 7.1.6. Time variation of envelope (a) and pulse
length (b) of pulse characteristic of storage device.

265

840

Go AMI _____0_ (7.2.1)
I V k I v (i +[itL-kiT, V + -c;'-.

The peak value of the stored signal is obviously observed at

t =0:

1-0O 1-0

Due to the high on-off time ratio of the stored pulse signals and the
very short response times of the filters compared to the repetition

quasi-period:

4 O4~T; TI <T; 'r4< T, (7.2.2)

j the last expression is simplified considerably:
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k-O (7.2.3)

nk

Accordingly, the signal transfer coefficient of the system being 26

analyzed comprises
N--I

g -Va ______+_+____ (7.2.4)

where T--- 1F,% is a coefficient proportional to the product of the

bandpass of the prestorage filter by the length of the input pulse (the

prestorage filter is optimum to this pulse at y = 1).

The signal transfer coefficient can essentially be calculated

rather accurately by formula (7.2.4) using a digital computer at large
value of N and value of n distinct from zero. Therefore, it is of in-

terest to find a simpler, although approximate expression for gi. To

do this, let us use the Euler formula [144] that permits us to reduce

calculation of the sum to calculation of the integral. In the consid-

ered case

g, - d/+s |J /+-'

+ MN-I

2 /T-~+y2 -

-In- - I

--- e- M dx ,nv- !
1 e In dy

-I + , + n /I++ -
-J- oy +N-l+yvI4 m -I e

+ 2V'-F-i + , + -

Using formula (3.362.2) from [92] twice, we find 267
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In.

-- 4) + 'In -L \] n/-

M N-1

"l-rI + y2 + (N -. I)"

In the case when (I +V)ln 0+I- 0y )(-m)D91,2, there is the possibility of
using the following asymptotic expression for the probability integral

(25]:

b 1(z-2).

and of simplifying the formula found above:

"tMN-1 X

I +y'+n 2 (N-I) (7.2.6)

- (( + I + n' (N - 1)1 In" -)]

The error of these formulas is less, the closer m is to 1, the lower

n is and the larger N and Y are. In most cases of interest, this error
does not exceed several percent.

Consideration of the dependence of the signal transfer coeffi-
cient (7.2.4), calculated on the BESM-2 computer, on the number of
stored pulses (Fig. 7.2.1) shows that the signal transfer coefficient
increases with an increase of the number of stored pulses. This in-
crease is more intensive, the closer the feedback coefficient to one, 268
the wider the band of the feedback circuit and the wider the bandpass

of the prestorage filter.

With unrestricted broadening of the bandpass of the feedback cir- 269
cuit, the signal transfer coefficient approaches the function

N

)I- (7.2.7)

242

• -. , -- . -- . . ...... . " .' - " O--z-



268,fN 32... ,, 269

M.0.0 M432

76n 4(_ 0 0 ,

ig. 7.2..Dpnec o

s g5 s de ic o N6 a di f r n 2alues of"11

a result of iiaigtesoaeo pulsed ignal in anideal

-Z I at .H.

ThF mltple 7..1 Dpedec y of/ Sina(..)lsovoul h trans-e oficetb

whercoedfficent ofb the signlbte frepresoagsilter5..2 Thrfore, the26

storage coefficient of the signal by the recirculator comprises
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Analysis of the results of calculation with condition (5.4.19) 27
shows that the bandpass of the recirculator feedback circuit, required

to find the signal transfer coefficient differing by less than 5% of

the value of this coefficient in an idealized system, is considerably

less (by a factor of 5-13) than the value calculated for the case of
uncompensated additional signal delay time in the feedback circuit

when the stored pulse signals are added to the time shift, which re-
duces the efficiency of storage [7, 143].

Thus, compensation of the additional signal delay time in the

recirculator feedback circuit permits a sharp reduction of requirements

on the width of the bandpass of the indicated circuit and thus simpli-
fication of the storage device.

1 2 _

Fig. 7.2.2. Dependence of coefficient of signal
storage by recirculator.

The dependence of the coefficient of signal storage by the re- 27

circulator on N at different approximations of the frequency character-

istics of filters Fl and F2 and the shape of pulsed signals is plotted

in Fig. 7.2.2. The solid curves correspond to the case of bell ap-
proximation of filter characteristics and the shape of pulsed signals

considered above at N - 1, y - 2 and d - 0.5. The dashed curves are
related to the case when the pulsed signals are square-shaped, the
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filters are identical low-frequency RC-filters and the effective delay

time of pulsed signals is compensated during storage [145]. The dash-

dot curves correspond to the hypothesis that the filters have square-
law frequency characteristics with bandpasses of AF1 and AF4 (where
AF1 < F4) . This case is obviously equivalent to storage in an ideal

recirculator having broad bandpass without restriction (b = AF4TO =

Comparison of these functions shows that they are identical and

hardly differ with different approximations of the filter characteris-

tics and signal shape.

7.3. Storage of Noise

Substituting (7.1.12) into (7.1.2), we find the output of stored

noise
-no k , t
.2aCa'[ghI , kT + 1f-±k

k 0

In view of (7.2.2), individual pulses of the pulse characteristic es-

sentially do not overlap. Therefore,

2 _2 ___[-_%c dt.

~2 a o 2 ~ 4 1 + k%2 ]

Using formula (3.321.3) from (921, we find 272

(7.3.1)

Having assumed that m = 0, we determine the noise output at the output

of the prestorage filter:

02

Consequently, the noise storage coefficient comprises

2e s . (7.3.2)
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We find this result by the spectral method (146-147]. If white
noise with intensity (1.2.4) is fed to the input, the noise at the
output has the energy spectrum

I - 2,,1. (in) coo uT +;'JC (-)

and output

ccK 2() (7.3.3)

"' I-2mK,()cor+m'K(i)
~1 0

Calculation of this integral causes great difficulties in the gen-
eral case. However, it can be calculated approximately by the method
of slowly variable coefficients [1461. The bases for using this method
are inequalities (7.2.2).

Let us divide the integration interval in (7.3.3) into individ-
ual sections, each of which corresponds to the period of variation of 273
a rapidly osc.llating multiplier coswT:

2 a (d+ia K2 (a) dw

3 - I - 2K, (a) cosT + m2K' (w)

.22
SE mI, (i + z) d (

iw 0 'K2( + x)

On the basis of (7.2.2) at 0 < x < a, we have

K,(i-+x)-K(i) it K,(i +x) r K,(iQ),

in view of which

ar . 1-2mKs (i) cosy+ WK(ia)

Using formula (3.613.2) from (921, we find

3 -- K (Q)

24( ).
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Since the value of the i-th period of the function coswT, in

view of (7.2.2), is very small compared to the bandpass of the system
and accordingly compared to the width of the output noise spectrum,

then the latter sum can be approximately replaced by the integral

" , K2 (w) d.o K (i ) . (7.3.4)

0 0 .

The integral expression 2a can be interpreted as the energy
I - n2K-!. (W)

spectrum of stored noise averaged by the period of the oscillating

multiplier coswT.

Having substituted the expressions for the amplitude-frequency 274

characteristics of filters into (7.3.4)

which ensue from (7.1.1), we find

,,o j. 2 ,e-p 4 -'),-

and after changing the variable integration by the law =p__,

we will have

Since m2zn2 < 1, then

-I - msz" ummz'

and

Changing the order of integration and summation and using formula

(4.269.4) from E92], we again find (7.3.1).
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To avoid the need to use a digital computer to calculate (7.3.2),
let us use the Euler formula [144] and formula (3.362.2) from [92] and
let us find the approximate expression:

Ql7'-V 2,In ---m) [ 2+0,5.

whose accuracy is higher, the Closer m is to 1 and the smaller n is. 275
It yields an error of approximately 10% at n = 1 and m = 0.9.

if 0then (7.3.5) is simplified even

further:

Q iM im) 4 In (1 -05. (7.3.6)

In this case the error is only 3.6% even in the case of m = 0.8 and
n = 0.2.

ILLVN IlII

'\
\

o ,- I

a5$4Apt 2 44S at 42 AS W

Fig. 7.3.1. Noise storage coefficient in
single storage device as function of n at
different values of m.
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Consideration of the dependence of the noise storage coefficient 276

on n (the solid curves in Fig. 7.3.1) shows that the noise storage co-

efficient decreases sharply with an increase of the ratio of the pre-

storage filter bandpass and the recirculator feedback circuit, especial-

ly if the feedback coefficient of the recirculator is close to one.

Therefore, if the bandpass of the prestorage filter is constant, the

noise output at the output is less, the narrower the bandpass of the

feedback circuit and the less this feedback coefficient.

The dependence of the noise storage coefficient on n in a storage

device in which filters Fl and F2 are low-frequency RC-filters with

bandpasses of AF1 and LFf (at the level of i1/l) [7, 146], are shown in

the same figure by the dashed lines. Consideration of them shows that

the noise storage coefficient in the case of RC-filters depends more

strongly on n. This is explained by the lesser square-wave nature of

the amplitude-frequency characteristics of these filters.

I
7.4. Gain in Signal/Noise Ratio

Let us characterize the efficiency of the storage device quanti-

tatively by the gain in the signal/noise ratio with respect to the

power which it provides compared to an optimum filter for a single

pulsed signal of the sequence being received [148-150].

Since the indicated ratio comprises the following at the output

of an optimum filter for a single signal

V2 (i= Vol

and at the output of the storage device

,~2 V, 2

where g and Q are the signal transfer coefficient and the noise stor-

age coefficient, respectively, by this storage device, then the given 277

storage device provides a gain in output signal/noise ratio compared

to an optimum filter for a single pulse signal.
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q5x 2g (7.4.1)

To calculate the power losses in the signal/noise ratio provided

by a storage device compared to an optimum filter for a sequence of

pulsed signals, it is sufficient to separate the number of N pulsed
signals in this (square-wave) sequence into gain (7.4.1):

N NQ

Consideration of the dependence of the gain calculated by formu-

las (7.2.4), (7.3.2) and (7.4.1) and provided by a single storage de-

vice on N (Fig. 7.4.1) shows that the gain initially increases slowly
as N increases at given value of n, then increases rapidly and then

increases more and more slowly approaching some maximum value. If m

approaches one and n decreases, the value of the gain increases and

reaches a maximum at a large value of N.

If n is sufficiently small, i.e., if the feedback circuit is suf-

ficiently wideband and y= 1, formula (5.4.7), which describes the gain

provided by an idealized storage device follows from (7.2.4), (7.3.2)

and (7.4.1).

It is also obvious from comparison of the curves presented in
Fig. 7.4.1 that a storage device with small value of m provides a

large gain with small number of N and the gain is greater in a stor-

age device with large value of m at large value of N. This indicates

that an optimum value of m, whose value approaches 1 as N increases,

corresponds to each value of N. An explanation of this is given in

item 1, section 5.4.

It follows from consideration of the dependence of the gain

on the dimensionless bandpass b,-AF4VQ- .- of the feedback circuit

(Fig. 7.4.2) read at the d - 0.5 level that the gain is always greater

at any values of b4 and N in the case when the prestorage filter is op-

timum to a single pulsed signal (y - 1).
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Fig. 7.4.1. Dependence of gain on number of pulses for
single storage device.

The gain increases monotonically at y = 0.5 and 1 with compara-
tively large value of N with broadening of the feedback circuit band-
pass, while it initially increases at y = 2 and then decreases slowly
after reaching some maximum, approaching the same maximum value as at

Y = 0.5. This maximum is expressed more strongly, the closer m is to
one and the smaller N is.

The presence of this maximum is explained by the fact that the
bandpass of the prestorage filter is twice as large at y = 2 than that
which is required for optimum intraperiod filtration. This excess 27

bandpass partially compensates for the insufficient bandpass of the

feedback circuit, which also determines the increase of the gain. With
further broadening of the feedback circuit bandpass due to the exces-
sively broad bandpass of the prestorage filter, the noise storage co-
efficient increases more rapidly than the square of the signal transfer
coefficient, which also leads to some decrease of the gain.
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With an increase of b4 , the gain may be decreased at small value

of N due to the more rapid increase of' the noise storage coefficient

compared to an increase of the square of the signal transfer coefficient.

It also follows from the curves shown -n Fig. 7.4.2 that the

feedback circuit bandpass required to provide a gain which exceeds 90%

of the maximum possible at given value of N can be approximately calcu-

lated by the following formula at y = 1

b,> lOj 104h '  (7.4.2)

in which b4l and aI are functions of m. Their values and also the min-

imum values of the required bandpass with condition (5.4.19), i.e., at

very large value of N, are placed in Table 7.4.1.

Table 7.4.1.

i 0,8 0,9 0,95

b, 0.302 0,355 0.525

0,61 0.70 0,70

b.muf 1.2 1,8 2.6

It follows from (7.4.2) that the requirements on the width of the

feedback circuit bandpass increase as the number of stored pulse sig-

nals increases and as m approaches one, quite agrees with simple physi-

cal concepts.

It is important to know that the required bandpass of the feed-

back circuit is considerably less in the considered case than upon 281

storage of square-wave video pulses by a storage device with low-fre-

quency RC filters and in the absence of compensation for the signal

delay in filter F2 [7]. This is explained by the fact that first, the

product of the length by the width of the spectrum is appreciably less

in a bell pulse than in a square-wave pulse [151] and second, which is

the main thing, the bandpass of this filter must be broadened sharply

to maintain high efficiency of the storage device in the absence of

compensation for the signal delay in filter F2 in order to reduce this

delay.
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Fig. 7.4.2. Dependence of gain on bandpass for single
storage device.

Accordingly, compensation for the additional delay time of the 28.
signal in the recirculator feedback circuit permits considerable reduc-
tion of the requirement on the width of the bandpass of this circuit
and thus considerable simplification of the design and circuitry of the
storage device.

It also follows from consideration of Fig. 7.4.2 that, if theprestorage filter is optimum to a single pulse signal (y = 1), the gain
is 20-25% higher than in the cases of a doubly increased (y - 2) and a 282
one-half decrease (Y = 0.5) bandpass.
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Thus, the width of the prestorage filter bandpass slightly affects

the gain in signal/noise ratio.

Thus, the possibility of increasing the output signal/noise ratio

8, 17 and 35 times by a coherent single storage device with m = 0.8,

0.9 and 0.95 and with relative bandpass of b4 = 1.2, 1.8 and 2.6 is shown

above. The possibility of realizing these storage devices raises no

doubts and has been confirmed experimentally [141, 152 and so on].

7.5. Requirements on Accuracy of Maintaining Equality of Delay Time in
Recirculator Feedback Circuit and of Repetition Quasi-Period of Pulsed
Signals

It is further noted (see item 1, section 11.1) that special mea-

sures are usually implemented in an analog storage device aimed at the

delay time T3 of the oscillations in the recirculator feedback circuit

coinciding with the length of the repetition quasi-period of the pulsed

signals. Despite this, due to variation of temperature and other de-

stabilizing factors during operation of storage devices, the delay time

may differ from the length of the repetition quasi-period by some value

a, which we call the error time:

A- T3-T.

In this case the storage of pulsed signals will be less efficient.

Let us determine the degree of decrease of the signal transfer co-

efficient of the storage device due to inequality of delay time and rep-

etition quasi-period and let us formulate the requirements on the pos-

sible value of the error time.

In the considered case operation (7.1.10) has the form

rv (t) - o (t-T,) - v(t-- T-A),

due to which formula (7.2.1) will be as follows: 2

,1 (t l V m v + 1 - k r --
A= 4 1=0

-A,Y +%2
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Specifically, at moment t = t1 , where 0 < Itll < T0/2 and
sign t 1 = sign A, we have

V. () = V,.X mflkX V (t + [ - kJ T -

k--O L=O

kA, / o 2+ + ).

The latter expression, due to (7.2.2), is simplified

01 0.) 1- ,,,o M (t, - M, -., + , +k "
kIO

The signal reaches a peak value of V3 = v3(tOnT) at some value of

t= ton T . The signal transfer coefficient then comprises

T N- +

where a= and a__ Specifically, (7.5.1) changes to (7.2.4) in

the absence of an error and at zero moment of time.

The transfer coefficient decreases (Fig. 7.5.1) as the error time

increases and it decreases more strongly, the smaller the value of n and

the larger the value of y. This is very simple to explain physically.
The larger the value of n, i.e., the narrower the bandpass of the recir-

culator feedback circuit, the more strongly the pulsed signal is exten-
ded in time during recirculation through this circuit. Its time shift

due to error then affects the value of the stored signal less. 284

The larger the value of y, the shorter the length of the pulsed

signals at the output of the prestorage filter and the stronger the time

error in the effect of storage of these signals is felt.

The values of the permissible time errors, corresponding to a de-

crease of the signal transfer coefficient by 5%, were calculated on the

Minsk-1 digital computer for different parameters of the storage device

and number of stored pulses (Fig. 7.5.2). These values decrease as n

decreases, Y and N increase and as m approaches one. The latter is
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Fig. 7.5.1. Transfer coefficient of signal by single
storage device as a function of relative error time.

explained by an increase of the active number of stored pulse signals

(see (5.4.8)).

Thus, delay time and repetition quasi-period errors whose value has
the order of several hundredths of a fraction of the length of the pulsed

signal and is strongly dependent on the parameters of the storage device
and the number N are permissible during storage of pulsed signals in a

single-stage storage device with m = 0.9 and 0.95.

These requirements on the accuracy of maintaining the equality of

the delay time and of the repetition quasi-period, although they are

rather rigid, they are still easy to fulfill. It is sufficient to refer 281

to the long-known fact that the error time that comprises no more than
5.10-3 of the pulse length [153-155] is assumed permissible in coherent-

pulsed systems for selection of moving targets.
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Fig. 7.5.2. Dependence of permissible time errors on N at

m = 0.9 (a) and m = 0.95 (b).
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CHAPTER VIII 28

A COHERENT DOUBLE STORAGE DEVICE

8.1. CHARACTERISTICS OF STORAGE DEVICE

Since the coherent single storage device considered in the previous

chapter permits one to achieve a slight gain in signal/noise ratio at a

value of m given from concepts of retaining stability (see section 11.2),
it is of interest to analyze a coherent double storage device (Fig.

8.1.1) in which two series-connected recirculators with delays by the

repetition quasi-period are used [156, 157].

Fig. 8.1.1. Block diagram of double
storage device.
Key: (1) Filter.

It has the transfer function

It () [-u.,, .)e'"lI[ [-m,,I, (.s)" (8.1.1)

K, (e)
" I - asK, (U)," .i t - m,K, (i-) ei*
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and the amplitude-frequency characteristic 288

K -- K , (to)
I1 - 2 °K (wa)) cos wT -(.)) X

(8.1.2)

X 11- 2mak. 2s. mc(,)

where KI(w) and K2 () are described by expression (7.1.1) and K3(w)
differs in the general case from R2 (w) only by the response and delay

times. Recirculators can usually be assumed identical, i.e., K3 ) =

- K2 (), m2 = ml = m, due to which

-- ,mK =(,)el r| (8.1.3)

and

K KmK , ( ) cos w r + m , ( 8 .1 . 4 )

The amplitude-frequency characteristic (8.1.4) of the considered stor-

age device, as in the case of a single storage device (Fig. 7.1.1), is
a comb characteristic and reaches maximum values at frequencies that

are a multiple of the repetition rate

Kwmn(1)= K (10) K,(1g)II- AK* (10M,'(8 .

and minimum values at frequencies = (1 + 0.5)9

K, ++)1aj
K..l (1) = K[( -+"= 2I ['+)a1

The shape of the spike of this characteristic is shown by curve 2 in
Fig. 7.1.5. It coincides with the amplitude-frequency characteristic

of a two-stage tuned amplifier with small frequency differences with

respect to the nearest maximum. Therefore, the bandpass of the men-

tioned spike at the level of 1// comprises [551

IF, (1) = (21/ - )12 F (1)- =O,6448F, (L)

where SF1 (1) is the bandpass (7.1.5) of the 1-th spike of the charac- 28C

teristic of a single storage device.
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Having narrower bandpasses of the amplitude-frequency character-

istic, a double storage device can store a greater number of pulsed

signals.

In the general case its pulse characteristic is

OD

-- h' (t,,A,d h, (t)+r y ' A' C' 8..
00

(t k, ( - , +k,, +- x

00 0 (8.1.6)

a=o kfi m

where A2 is an attenuation operation by a factor of m2

Specifically, if the recirculators are identical: m2 = ml =
and T6 = 4, then

kT. 4(8.1.7)

Thus, the pulse characteristic of a double storage device consists

of an infinitely large number of pulses of the same length of (7.1.14)
fallowing with repetition quasi-period T, which as in the case of a

single storage device, and of amplitude (Fig. 8.1.2)

H. ~ ' (W(TCo + 1) MA.
(I + k ,),t2 (8 .1 .8 )

that exceeds (k + 1)-fold the amplitude (7.1.13) of the k-th pulse in

the case of a single storage device. Therefore, the pulse amplitude
of the pulse characteristic of a double storage device decreases appre-
ciably more slowly as k increases than in the case of a single storage 290

device (Fig. 7.1.6, a). The latter also indicates the capability of

storing a greater number of pulsed signals by means of this storage

device.
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Fig. 8.1.2. Envelopes of pulse characteristic ofdouble storage device.

8.2. Signal Storage

The signal voltage at the input of the second recirculator is de-
scribed by expression (7.2.1). Since the second recirculator operates
by the same algorithm as the first, then by analogy with (7.2.1) in the
general case when the recirculators are different,

,,as) W A'C, r,',. (t) =v.., ,,c :a,; X

N-I _ _ _ _ _x , (t + 11 -,k,-, rl, V, +,c, +"k*, 2 )

Specifically, at moment t = xT, where x is an integer,

-,(XT t V', +0 k,,1+).
k=-h0 1__0

Because of (7.2.2), it is sufficient to consider only the terms in 291
this expression corresponding to the equality x + 1 - k - i = 0, due to

which
N+a-1 I

b'z- (m./!m,)'

V' E in, El ~ ~ inv. S two + '+u' + 2

where nI - 4/T 1 and n2 = T6/l.
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2'ig. 8.2.1I. Dependence of solutions of
equation (8.2.3) on n.

At m2 = 0 when there is no second recirculator, we find an ex-
pression that coincides with (7.2.3) at x = 0 and ni = n. In the case

of identical recirculators, m2 = ml = m and n2 = n =n,

US (X)=V.T (8.2.2)v, (x = Vo V , + Y, + ins

which coincides at n = 0 with the expressions found for an idealized 293

storage device in [143, 158].

The peak value of the signal at the output of a double storage

device can be observed somewhat later at t = yT, where y is an integer,

rather than at moment t = 0, corresponding to the mid-point of the last

pulse of the sequence to be stored at the input. It can be determined

either from the condition
des (xT) I

which is very difficult, or by analysis of the difference

v, (x2") - v, (ix - I I T") = V.ynt- -, X
(1 v + J,)MvX{fI + I+ (N + --)n,--Vl+, +z --l). )"

It follows from this expression that the desired number y is the entire
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part E(z) of' solution z of the equation

-+ , (Z- i, (8.2.3)

29:
29:
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Fig. 8.2.2. Transfer coefficient of signal by double storage
device as function of number of pulses.
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Consideration of the solutions of this equation (Fig. 8.2.1) cal- 29

culated on the Minsk-l computer shows that a shift of the peak value of

the stored signal is observed only with a comparatively small number of

stored pulse signals. Its value is higher-, the lower the value of N and

n, the closer m is to one and the higher the value of y.

This conclusion becomes obvious if one takes into accunt that when m ap-

proaches 1, y increases and n decreases, the considered storage device

approaches closer and closer to an idealized device, i.e., one consist-

ing of recirculators with feedback coefficient equal to one and with un-

limited broad bandpass of the feedback circuit. After the end of the

signal at the input of the storage device, the signal amplitude at the

input of the second recirculator remains constant, due to which the

signal is stored without limit at its output to an infinitely high

level, which is observed with infinitely long delay of the relative mo-

ment of the end of the signal at the input.

Naturally, a real storage device with fixed parameters is closer to

an idealized device, the lower the value of N.

An increase of the shift of the peak value of the stored signal

with an increase of y is explained by the fact that the wideband nature

of the recirculator feedback circuit increases in the case of fixed value

of n, which brings the considered system close to an idealized system.

It follows from (8.3.2) that at n = 0 the shift of the peak value

is observed (i.e., y - E(z) > 1) only provided (N + l)mN > 1, which co-

incides with the value found in item 2, section 5.4.

The peak value of the stored signal is calculated by formula (8.2.2)

at x - y, while the signal transfer coefficient is

v vfv) 0'u- (1+I)m, .. (8.2.4)

The dependence of the signal transfer coefficient on N (Fig. 8.2.2)

calculated on the Minsk-I computer has the same nature as for a single

storage device (Fig. 7.2.1). However, the values of the signal transfer

coefficients in a double storage device are appreciably higher with the 29

same values of parameters, which is quite natural.
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Analysis of the results of calculation also shows that the band-

pass of the feedback circuits must be broadened approximately one and

a half times compared to the case of a single storage device to

achieve a signal transfer coefficient distinct from a similar coeffi-

cient by less than 5% in an idealized storage device.

8.3. Storage of Noise

By substituting (8.1.7) into (1.7.2), using (7.2.2), changing the

order of integration and adding and calculating the integral, as in der-

ivation of (7.3.1), we find

_L_ (k +I)Rmzh (8.3.1)

Consequently, the coefficient of noise storage by a double storage

device is

=(k + f)'maalKl+ kn. (8.3.2)

The dependence of the coefficient of noise storage by a double

storage device on the bandpass ratio n (Fig. 8.3.1) has the same nature

as in a single storage device (Fig. 7.3.1), but the value of these co-

efficients is considerably higher.

It follows from (8.3.2) and (7.3.2) that the coefficient of noise

storage by a second recirculator comprises

Q= Q2 a h"2X 2 (8.3.3)

Comparison of the dependence of this coefficient on n (Fig. 8.3.2)

to similar functions (Fig. 7.4.1) for a single storage device (i.e., for

the first recirculator) shows that the second recirculator stores the

noise a considerably greater number of times than the first. Thus, for

example, at m - 0.9 and n - 0.1 the noise output is increased by the 296

first recirculator 5.16-fold and by the second 48.2-fold, i.e., almost

10 times greater. This is explained by the strong correlation of noise

at the output of the first recirculator (see item 2, section 5.4).
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8.4. Gain in Signal/Noise Ratio

The dependence of the gain calculated by formulas(7.4.1), (8.2.4)

and (8.3.2) provided by a double storage device on N (Fig. 8.4.1) has
the same nature as in the case of a single storage device (Fig. 7.4.1).
The main difference of these functions is that the maximum value of the

gain in the case of a double storage device is reached at a higher value

of N. 266



Comparison of these functions for single and double storage de-

vices shows that two recirculators with m = 0.8 are equivalent to a

single recirculator with m = 0.9, while two recirculators with m = 0.9

are requivalent to a single recirculator with m = 0.95 (see item 2, 29

section 5.4). This permits one to get around the difficulties of find-

ing the values of m close to 1 by using the second recirculator.

0.9.0

0.95

I_

___________ ____,____

Fig. 8.4.1. Gain of Double Storage Device as Function
of Number of Pulses.

Consideration of the dependence of the gain when using a double storage

device on the dimensionless bandpass of the recirculator feedback cir-

cuit calculated at the 0.5 level (Fig. 8.4.2) shows that the gain in-

creases monotonically as b4 increases at y = 0.5 and 1 and at compara-

tively large value of N. If y = 2, then the gain initially increases as

b4 increases, and then decreases after reaching a certain maximum, ap-

proaching the same maximum value as at y = 0.5. As in the case of a

system with a single recirculator, this maximum is expressed more

strongly, the less the value of N and the closer m approaches 1, while

its presence is explained by partial compensation of the insufficient

bandpass of the feedback circuits by the excess bandpass of the pre- 299

storage filter. In this case the gain can even somewhat exceed that at
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Fig. 8.4.2. Gain of double storage device as function of feed-
back circuit bandpass.

At small values of N, the gain at y = 1 is considerably less depen- 299
dent on the feedback circuit bandpass as in the case of a single storage

device.

It follows from Fig. 8.4.2 that the feedback circuit bandpass ofI the recirculators required to achieve a gain whose value is not less* than 90% of the maximum possible at y = 1 with given value of N (i.e.,
in an idealized storage device) can be calculated by the formula

b2 N- N.,2 . 1 "(...,
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which differs from formula (7.4.2) only by the values of coefficient.

b4 2 and a2 (Table 8.4.1).

Thus, as in the case of a single storage device, the requiremenI

on the bandpass of the recirculator feedback circuits of a double st€

age device increase as N increases and as m approaches 1.

Table 8.4.1.

0,8 0,9 0,95

b4z 0,335 0,610 0,990

0,60 0,51 0,42

As in a single storage device, the required bandpass in the con-

sidered storage device is considerably lower than during storage wit

compensation for the signal delay time in filter 02 (7].

Consideration of the functions shown in Fig. 8.4.2 shows that t]

gain varies by no more than 25% upon variation of y from 0.5 to 1 an(

then to 2. This indicates the weak critical nature of the gain to vi

ation of the bandpass of the prestorage filter near the optimum valuo

8.5. Additional Gain Due to Use of Second Recirculator

The additional gain caused by using a second recirculator incre

to values on the order of two with an increase of N (Fig. 8.5.1). I

value is higher, the broader the bandpass of the prestorage filter.

An additional gain is observed only if the number of stored pul

signals comprises no less than 50-60% of the active number (5.4.8),

.f the following condition is fulfilled

N O (t,5-,8)/(1--,,). (8.

- , ", gored nulsed signals is equal to the active r

. a- o.wodu 1.4-1.6. At - - 0.5, the additioni

• ar increase of bandpass b4 (Fig.

L ii',
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Fig. 8.5.1. Dependence of additional gain on number
of pulses.
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Fig. 8.5.2. Dependence of additional gain on feedback
circuit bandpass

This same nature of dependence is also observed at y = 1 if the number 300

of stored pulsed signals is greater than the active number. With an
active number of stored pulse.- and at 1 and also at any value of N
and at - - 2, the additional gain initially increases with an increase 301
of b4 and then decreases. This is also explained by partial compensa-
tion of the insufficient bandpasses of the feedback circuit
by the excess bandpass of the prestorage filter.
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Thus, the use of a second recirculator identical to the first per-

mits one to additionally increase the signal/noise ratio approximately

twofold with sufficiently large number of stored pulsed signals. The

comparatively low value of the additional gain is explained by the high

correlation of noise at the input of the second recirculator, which was

already noted above. Attenuation of the harmful effect of noise corre-

lation, which leads to a sharp increase of the additional gain, is

achieved in a two-stage storage device. The next chapter is also devoted

to consideration of it.
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CHAPTER IX.

COHERENT TWO-STAGE STORAGE DEVICE

9.1. CHARACTERISTICS OF STORAGE DEVICE

With two-stage storage (see item 4, section 5.4), the delay time of

oscillations in the feedback circuit of the second recirculator is in-
teger M times greater than the repetition quasi-period of pulsed signals
[123-124]. Because of this, a two-stage storage device (Fig. 9.1.1)
differs from a double storage device (Fig. 8.1.1) only by the fact that

a delay device by time t33 = MT - t6 rather than a delay device by time

t32 = T - t6 , as in a double storage device, is used in the second re-

circulator of a two-stage storage device.

Fig. 9.1.1. Block diagram of two-stage storage device.
Key: (1) Filter.

The considered storage device has the transfer function

) ji -nR,((w)e 9.1.1)
K, (M)

[I - i,,K, (a) eJ41j [I - nsKa (.) eKM, I
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and amplitude-frequency characteristic 304

K K, () x
VI - 2m1 K, (o) cos toT + m2K1 ()

x_ _ _ _(9.1.2)
1i7 - 2nK, (t) cos aMT + m ,K2 (()

Accordingly, the amplitude-frequency characteristic of a two-stage

storage device is the product of the amplitude-frequency characteristics

of a single storage device (7.1.3)" and of a second recirculator with de-

lay by time MT. Both these characteristics are comb type, however, in
the case of a single storage device the spikes of this characteristic

follow with the repetition rate of pulsed signals and have bandpass
(7.1.5), while in the case of the second recirculator with delay by MT,

the spikes of the characteristic follow with rate which is M times less
than the repetition rate of pulsed signals and have a lower bandpass by

a factor of M because of this. As a result of remultiplication of these
two characteristics, a comb characteristic of a two-stage storage device

whose spikes (see, for example, curve 3 in Fig. 7.1.5) are located at

frequencies that are a multiple of the signal repetition rate and have
considerably narrower bandpasses than in the case of a single storage

device, is formed.

Using (9.1.2) at ml = m2 and K3(w) = K2(w), one can show that the

bandpass of the spike of the amplitude-frequency characteristic of a

two-stage storage device is less by approximately a factor of /1 + T4I

at M > 3 than in the case of a..single storage device:

IF, 8F
VF, i- (9.1.3)

Having an appreciably smaller bandpass of the spikes of the ampli-

tude-frequency characteristic, a two-stage storage device can store a
considerably greater number of pulsed signals.

Denoting by H the delay operation by time MT: rju(t) rwum (-)u(tMf.

and using (7.1.8), (7.1.11) and (7.1.12), we find the pulse character-

istic of a two-stage storage device 30.
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i== i=O

XV m, v(t -lk +iMlrT, Vr-l +k,2 +i)

This expression can be represented differently as:

h, (f) ='p! M I Xl
IIfil) 1=0 (9.1.4)

X z'v(t-l, 2 + (I ) 't i +

M
where z = m2/ml.

It follows from (7.1.4) that the l-th pulse of the pulse character-

istic is in the general case the sum of Ef nL I bell pulse with

different lengths and amplitudes. However, in the special, but very

similar case when

M12_ or n-M 1 2n =M'1 2n, (9.1.5)

i.e., the bandpass of the recirculator feedback circuit with M-times

greater delay is / times less than the bandpass of the other recircu-

lator, expression (9.1.4) is simplified:

a z E ( Ui 
m ) + !  

-

h,) M --- U (t-IT, ,,V+n). (9.1.6)

Comparing (9.1.6) to (7.1.12) and (8.1.7), we conclude that the

pulse characteristics of a two-stage (with condition (9.1.5)), single

and double storage devices differ only by the law of amplitude variation

of their individual pulses. Specifically, in a two-stage storage device

for which condition (9.1.5) is fulfilled, this law is as follows:

;V hM(i- (9.1.7)
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It is plotted for n = 0, mIl = m2  0.9 and M = 10 in Fig. 9.1.2, a. The 306

dashed curve in this figure reproduces the upper envelope of the furiction

H3'iaRc(kT). The pulse characteristic of this storage device is plotted

in Fig. 9.1.2, b. Consideration of these functions shows the intermit-

tent amplitude variation of the pulse characteristic of a two-stage

storage device. This is explained by the fact that the feedback in the

second recirculator (Fig. 9.1.1) operates with a delay M times greater

than that in the first recirculator.

NY (k T) IF

lil t 1 t

, i -

0 0 20 160

4) T

Fig. 9.1.2. Envelope of pulse characteristic (a) and pulse
characteristic (b) of two-stage storage device.

The upper envelopes of the amplitudes of the pulse characteristic

of a two-stage storage device at different values of M are plotted in

Fig. 9.1.3. The case of M - - corresponds to a single storage device

while M - 1 corresponds to a double storage device. It is easy to see

that the upper envelopes of the amplitudes of the pulse characteristic

of a two-stage storage device decrease in time considerably more slowly

than in a double and especially in a single storage device. Using 30

(9.1.7) for n - 0 and m2 = ml - m, it is easy to show that this decrease

occurs in a two-stage storage device at comparatively large values of t

according to the law

(9.1.8)

275iS



-

whereas it occurs for a single storage device as

Ff, (tP = Hi(O) 'T

and for a double storage device 30(

H, (t)- if, (O) (1- -+ .inZ.

.,*- ,.

2

10 .1 7

0 40 80 rzo 10

Fig. 9.1.3. Upper envelopes of pulse characteristic of two-
stage storage device.

Thus, as the rate of the amplitude envelope of the pulse character- 30

istic decreases, a two-stage storage device with feedback coefficient m

is equivalent to a single storage device with feedback coefficient m1/M.
This indicates the capability of storing a considerably greater number

of pulsed signals with a two-stage storage device than when using a

single and even a double storage device.

9.2. Signal Storage

Voltage (7.2.1) acts on the input of the second recirculator during
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storage of a pulsed signal sequence. Therefore, by analogy with (7.2.1)

at the output of the storage device

V.( ) = 1 4 C 6, 'I',(t = .. M

N-I 1=0XI: P' '+[ k-M- T V71 +, +2k + ,).
1=0 +% -

At t = 0, the output voltage of the signal reaches a peak value

V. V..~ E M 5' ,nt'XL.0
N-!

X V ([I imIT.V,2 2 + i.x~v q ---- Mr. V, o 4 6 +,).

Because of (7.2.2), this expression is simplified:

L0 ~
II

, _o k=0 V,'+ Y' + kn, t,

Consequently, the coefficient of signal transfer by a two-stage 309

storage device is

g()) - ,(9.2.1)1 VT+ + ,,12"

specifically, if the number of N stored pulsed signals is a multiple of
M, i.e., N = ML, where L is also an integer, then

L-I (L-i) M-1

g, (ML) = y E _ ___ (9.2.2)
t- Pe i -' + kni+ '

At M - 1 when a two-stage storage device degenerates into a double stor-

age device, we find an expression which differs only by the constant

multiplier from expression (8.2.1) at z - 0, which describes the signal

amplitude at the output of a double storage device.

In the case of infinitely broad bandpasses of the recirculator

feedback circuits, i.e., nI - n2 a 0, (9.2.2) leads to the form that
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differs only by the constant multiplier from the expression found in

item 4, section 5.4.

If the feedback coefficients and bandpasses of the recirculator

feedback circuits are identical (ml - m= = m and n, = n2 = n), then

(9.2.2) assumes the form

go -) T M-I Mf+d (9.2.3)

Specifically, with optimum bandpass of the prestorage filter

L-1 (L-4) M-1 %+ (9.•2.4 )
gs(ML)=E E Y+ -(+ i) ,,

i=0 k=0

The bandpasses of the feedback circuits will also be different due

to the difference of the delay devices in these recirculator circuits.
Apparently, a device with long delay time will have a smaller bandpass. 310

Specifically, with condition (9.1.5), ml = m2 = m and y = 1, we have

L (L -) M - 1 I+g( L) = LL - ______ (9.2.5)Y 2+(i+Ml)nh"

Consideration of the signal transfer coefficients from M (Fig.

9.2.1) calculated by this formula on the BESM-2 computer shows that the

signal transfer coefficient decreases with an increas of the delay time
in the second recirculator feedback circuit. The extent of this decrease

is higher, the higher the value of n, the closer m is to 1 and the lower
the value of N.

This is explained in the following manner. According to (9.1.5),
n2 also increases with an increase of M, i.e., the bandpass of the sec-

ond recirculator feedback circuit is constricted. However, since n is

sufficiently small, this does not lead to a significant constriction of
the stored signal spectrum and therefore causes no strong attenuation
of its peak value. There is sharp attenuation of the high-frequency
components of the signal with larger value of n during circulation of

the signal, which also determines the intensive decrease of its peak

value.
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The number of L subsequences stored in the second recirculator de-

creases with an increase of M in the case of fixed value of N = ML.

Then similar to condition (5.4.19) of the practical independence of out-

put voltage of the number of stored pulses, the inequality

m'-L,. I (9.2.6)

becomes ever weaker and then ceases to be fulfilled. This also leads

to a decrease of the coefficient of signal storage by the second recir-
• culator and consequently to a decrease of the coefficient of signal

transfer by the storage device. This is naturally observed at lower

value of M, the closer m is to 1 and the lower the value of N.

The increase of losses in signal transfer caused by a decrease of

N is especially high at small values of n and is insignificant at large

values of n. This is explained by the fact that an increase of n is

equivalent to a decrease of the feedback coefficient to a value at which 312

inequality (9.2.6) remains sufficiently strong even at a lower value of

N, due to which there is almost no increase of losses.

9.3. Storage of Noise

Substituting (9.1.4) into (1.7.2) and disregarding the effect of

mutual overlap of these pulses due to the high on-off time ratio of

pulses of the pulse characteristic, we find

2 28 Zic Z2 %
1'2ac , *z ' M F×

1=0 two k=0

X V ,t+(I-kM) ,+k )dt.

Since according to (7.1.9),

v (t.)u(t, dt=

the output of stored noise is
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Fig. 9.2.1. Dependence of coefficient of signal transfer by
two-stage storage device on M.

(11) - (9.3.1) 31

280



* .. .. . . .. .. . .. .

while the coefficient of noise storage is

E01z- >= (9.3.2)

Zhk= _L M 2

h= 2 2n

Specifically, if m2 = 0, i.e., there is no second recirculator, (9.3.2) 313

degenerates into (7.3.2). In the idealized case of infinitely broad
bandpasses of the feedback circuits (nl = n2 = 0), we find from (9.3.2)
after very laborious transformations the expression derived in item 4,
section 5.4. Having selected the value of M in it as large as possible

Mso that m <<1, we will have

I [ n-") (I- in)

It follows from this expression that the coefficients of noise storage
by the first and second recirculator, respectively, comprise

. and Q1 I
-- I -M

i.e., noise is stored in the second recirculator by the same law as in

the first. This is natural since the inequality presented above is the

noncorrelation condition of the noise components stored by the second

recirculator.

If the feedback coefficients and bandpasses of the recirculators

are identical, then

Q- 5 Z(+k (9.3.3)

At M - 1 this formula degenerates to. (8.3.2).

It is easy to ascertain that
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R R R 2R
E iV ei+j Z'=I:(1+ 1) 61z'+ X(2R + I+ ) OtZ,

i=a 1=0 1=0 t-R+I

where ep is coefficients dependent only on ordinal number p.

Therefore, (9.3.3) can also be represented in the following form: 31

M-!

Q , m ,,
S=E

E(1 k--

- ~ ~ ~ ~ ~ ~ O M= ) +k-, -(If)n+ E +I1tZ' (934

= 1= k - ( l) n

[2E (L) + I-l 1

,'=E 2

With identical feedback coefficients and bandpasses that satisfy

condition (9.1.5), from expression (9.3.2) follows

Q3 I I-, , -' - -  -
np 1 1+ ini,-

---- + MR ( (9.3.5)

-- (l - ,.m-!), Y l+ In"
t=0

where R(x) is the fractional part of integer x.

The dependence of the noise storage coefficients on M, calculated

by the last formula on the BESM-2 computer (Fig. 9.3.1), has identical

nature: the noise storage coefficient (and accordingly its output power)

decrease in the first approximation by exponential law as M increases.

This decrease is especially sharp with an ".ncrease of M from 1 to 2 and 3.

In this case the noise storage coefficient is attenuated by a factor of

approximately 1.5 and 2-2.5.

The noise storage coefficient decreases even more slowly with a

further increase M. This is explained by the fact that the decree cf

correlation attenuation decrases more and more upon trans.tior fr-'
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Fig. 9.3;1l. Coefficient of noise storage by two-stage storage device
as function of M.

M =1 to M = 2 and 3 after sharp attenuation of the correlation coeffi- 316

cients of the noise stored in the second recirculator.

The noise storage coefficient decreases even more strongly as M in-

creases, the larger the value of n and the closer M is to 1.

There is a sharp constriction of the bandpass of the second recir-

culator feedback circuit AF-- JW-M112&F,, with an increase of n and M,
which causes strong attenuation of the high-frequency components of noise

at the output. Therefore, the noise storage coefficient is attenuated

even more strongly with an increase of M, the higher the value of n.

The effect of the feedback coefficient on the attenuation of the

noise storage coefficient is explained by the fact that the correlation
coefficient of the noise stored in the second recirculator and whose

value is attenuated more sharply with an increase of M, causing stronger

attenuation of the stored noise output, is also higher with a larger

value of m.

The main conclusion is that the noise power at the output of a two-

stage storage device can be sharply attenuated by increasing the delay

time several-fold in the feedback circuit of the second recirculator.

Attenuation of the output power of noise more than half is achieved at

comparatively small values of M, on the order of 3, when the second re-

circulator is not very strongly complicated and can be realized in some

case.. 283



9.4. Gain in Signal/Noise Ratio

The gain provided by a two-stage storage device was calculated by

formulas (7.4.1), (9.2.5) and (9.3.5) for the case of (9.1.5) with op-

timum bandpass of the prestorage filter. Consideration of the dependence

of this gain on M (Fig. 9.4.1) shows that the gain initially increases

with an increase of M and then decreases after reaching some maximum at

optimum value of (5.4.25). The course of these functions is explained

in item 4, section 5.4.

The maximum gain increases with an increase of N, upon approach of

m to 1 and with a decrease of n. These results are obvious.
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Fig. 9.4.1. Dependence of gain of two-stage storage device on M.
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The ratio of the maximum gain to the number of stored pulsed signals 31
comprises 0.68-076, 0.66-0.86 and 0.81-0.85, respectively, at m = 0.8,
0.9 and 0.95 with sufficiently small value of n < 0.01. This ratio
decreases as N increases.

Thus, replacement of optimum filtration by sequences of a larger
number of pulsed signals by their two-stage storage using sufficiently
wideband recirculators leads to comparatively small losses in the thres-
hold signal, on the order of 1 dB.

The extent of these losses is decreased as m approaches 1. In this
case the delay time in the feedback circuit of the second recirculator
also decreases in view of (5.4.25), which simplifies its realization.

Additional losses appear with an increase of n, i.e., with a de-
crease of the bandpasses of the recirculator feedback circuits b4 =

, ,44I • 0, 441..--12

A F.,4 ; and ., 4 1=- 112 However, their value is low at n =

* = 0.1 and comprises a fraction of a decibel. These losses increase as
N increases. The losses increase to 1-2 dB at n = 0.3. The losses in-
crease to values on the order of tens of decibels at n = 1, i.e., the
efficiency of a two-stage storage device drops sharply.

The additional gain caused by an increase of the delay time in the
feedback circuit of the second recirculator from a value equal to the
repetition quasi-period of the stored pulsed signals to an optimum
value MOnTT increases with an increase of N and with a decrease of n.

The additional power gain comprises approximately 1.5, 2, 2.5 and

3.5, respectively (i.e., approximately 1.8, 3, 4 and 5.5 dB) at small
values of n (less than 0.1) and with number of stored pulsed signals

exceeding the active number (5.4.8), 2, 3, 4 and 6 times. The addi-
tional gain increases with a further increase of N. If n increases to
0.3, then the additional gain decreases by a value comprising a fraction
of a decibel with small value of N and approximately 1 dB with large
value of N.
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A further increase of n to 1 reduces the additional gain to 1-3
dB. The value of this gain also increases with an increase of N.

Thus, two-stage storage is rather effective if the number of stored 31
pulsed signals is no less than three times their active number, while
the bandpass of the first recirculator feedback circuit is three times
broader than that of the optimum prestorage filter.

However, the ratio of the indicated bandpasses should be on the
order of 10 so that the lossas are low compared to an idealized two-
stage storage device. In this case the nature of the dependence of the
bandpass of the second recirculator feedback circuit on M, which can
differ from (9.1.5) in practice, will have a slight effect on the value
of the gain obtained.

Since the number of signal recirculations through the feedback cir-
cuit of the second recirculator is less with two-stage storage than in
the case of double storage, the bandpass of this circuit can be corre-
spondingly reduced.

Accordingly, two-stage storage requires comparatively moderate width

of the bandpass of the second recirculator feedback circuit, the main
component of which is the delay device.

This recirculator should provide delay by time MonTT, which can be
difficult, with sufficiently broad bandpass. If this delay device can-
not be made, it may be feasible to reduce M from the optimum value
(5.4.24) to 3. An additional gain on the order of 2 can then be
achieved at n < 0.1 and at large value of N compared to a double stor-

age device.

Consequently, the very complicated and important problem of effi-
cient storage of sequences of a large number of pulsed signals can be
solved by using a two-stage storage device consisting of two recircula-
tors with sufficiently wideband feedback, delayed by the length of one
and several repetition quasi-periods of pulsed signals, respectively.
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CHAPTER X. 320

NONCOHERENT EXPONENTIAL-WEIGHT STORAGE DEVICE

10.1. PRELIMINARY REMARKS

1. Advantages and Disadvantages of Noncoherent Storage

If pulsed signals are stored after a noncoherent (amplitude) detec-

tor (Fig. 10.1.1, a), it is called noncoherent storage (see section

6.1). It is the only one possible if the sequence of pulsed signals

being received is not coherent.

(3)

a)

Fig. 10.1.1. Block diagrams of noncoherent
storage devices.
Key: (1) Amplitude detector; (2) Video frequency
storage device; (3) Square-law detector.

However, even when receiving coherent sequences of pulsed signals,

noncoherent storage can be feasible since first, it permits a
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considerable increase of receiver sensitivity (compared to the case 321
when storage is not used) and second, unlike coherent storage, it does

not require complication of the receiver determined by the need to de-

sign it on a circuit with very large number of channels or with very
wideband delay line in the recirculator feedback circuit (see section

6.5). It is further shown that the loss in receiver sensitivity is
comparatively low when coherent storage is replaced by noncoherent

storage.

Yet another disadvantage is inherent to noncoherent storage. It
includes the fact that only the information written in the amplitude

of the signals being received is used during noncoherent storage and
the information included in the phase (frequency) of these signals is

completely lost. Because of this information about the speed of a

target that caused signal reflection is lost.

2. Characteristics of Noncoherent Storage Devices with Exponential
Weight Function

The significant feature of a noncoherent storage device isthe

presence of an amplitude detector, which is a typically nonlinear
component.

Nonlinear components (for example, square-law generators) are also
used during coherent storage of signals with unkonwn initial phase.
However, the signal is fed to them only after storage, i.e., when its
level will be higher. Nonlinear conversion of the signal-noise mixture

occurs in noncoherent storage even before storage when the signal is
weak compared to noise. Suppression of the signal by noise is observed

in this case (129]. The lower sensitivity of a receiver with noncoher-
ent storage is also explained by this.

Due to its nonlinearity, an amplitude detector causes a change of

the distribution laws of random voltages, which are usually Gaussian

at its input.

Thus, if an instantaneous voltage of a mixture of a pulsed signal

of amplitude V and Gaussian noise of output a2 acts on the input of a
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detector which we subsequently assume is square-law with normalized

characteristic

(hrsu is the instantaneous value of output voltage and U1 is the 32:

voltage amplitude at the input) distributed according to the

normal law, then according to [20, 129] the output voltage

has the following probability distribution:

W (uI) =T- exp -I ().(10.1.2)

When using a linear detector, the instantaneous voltage of the

signal-noise mixture is distributed by generalized Rayleigh law (6.3.2).

Thus, random voltages which are distributed by a law differing from

normal act on the input of a storage device following an amplitude de-

tector of any type. The distribution law of these voltages varies

upon their transmission through a storage device which is a linear

t system. it is very difficult to determine it since there are presently

no engineering methods of calculating the distribution laws of voltagesI at the output of a linear system when random voltages distributed by

other than normal law are acting on its input.

True, there is one special case at which the distribution function

at the output of a linear system can be calculated comparatively simply

and rather precisely. This is the effect of random voltage on a linear

system whose bandpass is considerably less than the spectral width of

the input voltage. The random voltage is normalized with this condition

at the output of a linear system [15, 20, 159].

A similar tendency toward normalization is also observed in a stor-

age device whose voltage output is equal to the sum of input voltage

samples. This is explained by the fact that if the number of terms is

sufficiently high and their distribution laws are identical, then in

view of the central limiting theorem of probability theory, the sum of

these terms is distributed by approximately normal law [15, 20].

The indicated normalization of voltage at the output of the stor-

age device can be explained differently. The frequency characteristic
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of the storage device is a comb type with sufficiently narrow trans- 323

mission bands (see item 1, section 5.4). Therefore, if random volt-

ages having broad spectrum act on this system, the distribution of the

output voltage becomes close to normal.

In most papers known to us on noncoherent storage [10-13, 160-161]

this phenomenon of normalization of random voltages at the output of

the storage device is also used. However, it is assumed in all these

papers (and in other papers [134, 162*1) that the storage device is

ideal in the sense that the voltage at its output is the sum of a large

number of input voltage samples:

N
Ut (t)m u,(t-k)

hml

But most real storage devices (a recirculator, RC-commutator, comb

filter, storage tube and so on) add the input voltages with exponential
weight function (EVF)

us ,n(t)mu(f- kT)= mkt (10.1.3)
*-=0 k=O

Such a storage device has the pulse characteristic

h t (t k m - (t-kT) e- T , (10.1.4)
amoo

where I=-1I- is the coefficient of the exponential weight function

and m is the weight multiplier.

The normalized envelope of this pulse charactriistic at t > 0 is
the exponent e'Et . Because of this, the indicated device is naturally

called a storage device with exponential weight function. It is an 324

approximation of a real storage device with delayed feedback. Unlike

the previously considered block diagram (Fig. 7.1.1), an adder whose

With the exception of Ye. G. Trubitsyn's paper [163].
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feedback circuit contains no frequency filter (Fig. 10.1.1, b) is

studied in the given chapter for significant simplification of analysis.

The results obtained in this case are valid if the bandpass of the

storage device feedback circuit is much broader than that of the pre-

storage (and predetector in this case) filter since condition 7.4.2 is

fulfilled. The method of accounting for the final bandpass of a stor-

age device is outlined in item 4, section 10.6.

Due to the exponential nature of storage law (10.1.3), the distribu-

4 - tion laws of different terms of output voltage have different parameters.

Therefore, the numerical characteristics of these terms (for example,

the mean values and outputs) may differ strongly. If the received os-

cillation is a steady random process, i.e., if its distribution laws do

not vary in time, the mean values of the terms of output voltage vary

* by the law mk with an increase of their ordinal number k and they vary

* by the law m2k with an increase of output. Specifically, at m - 0.9,

even the 10th term has a mean value less by approximately a factor of

2.9 and output less by a factor of approximately 8.2 than the zero term.

At m - 0.8, the indicated characteristics of the 10th term are less by

a factor of 9.3 and 84, respectively, than that of the zero term.

Accordingly, the conditions of the central limiting theorem of prob-

ability theory are not fulfilled in the considered case at m - 0.8-0.95

and normalization of the outpuxt voltage is comparatively weak.

This also determines the difficulty of determining the distribution

* laws of random voltages at the output of noncoherent storage devices

with exponential weight function. And the threshold signals cannot be

calculated without a knowledge of these laws.

The distribution laws of the voltages of a signal-noise mixture at

the output of the considered device are further determined by the ap-

proximate method.

10.2. Random Voltage Distribution at Output of Square-Law Storage 32!
Device With Exponential Weight Function and Frequency of False Alarms
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A square-law storage device is understood as a combination of a

square-law detector and recirculator (Fig. 10.1.1, b). Selection of

the detector as square-law is explained by the fact that the analytical

expressions of the statistical characteristics of random voltages are

simpler for this detector. This simplifies the analysis. The results

found in this case are approximately valid for devices with different

type detectors as well [160, 164, 1653.

We note that due to the first of conditions (7.2.2), the terms of

the sum (10.1.3) are essentially mutually indpendent. The samples of

input voltage u2k contained in this sum are distributed by law (10.1.2).

If for brevity of notation we write Ym x 3-, and q = V/a

and if the number of terms of sum (10.1.3) is taken as finite and equal

to N, then instead of (10.1.2) and (10.1.3) we find

(x)=exp(t-I..-) 4(qV~ I x (10.2.1)

and

(10.2.2)

The random value xk has the characteristic function [201

I(v)= ~W(xa) e '-'dx ,*=(q I/x)dxj,.

Changing the variable by law tx2 = z and using formula (6.631.4) from

[921 with regard to the fact that I0(y) - J0 (jy), we find

(,) (10.2.3)

Both distribution (10.2.1) and the characteristic function (10.2.3) are 326

identical for all values of xk.
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Based on the known property of the characteristic function, the

k-th term of sum (10.2.2) has the characteristic function

0IL(o) =0 (m4O)= (- mkv)- exp ( Y
" , - ,.tkV

Due to the mutual independence of the terms of this sum, its char-

acteristic function is equal to the product of the characteristic func-

tions of the terms [20]:

N-I .N-I

,o AMk.O

The probability distribution density of sum (10.2.2) is determined

by using an inverse Fourier transform:

V(y)-- $e(v)e-J dv-

,= ~~~' f . t -inf,- (10.2.4)
2~ I-nv

Calculation of this integral in the general case causes difficulties

which have not yet been overcome. Therefore, let us limit ourselves to

the case of the absence of a signal (q = 0). The probability density

of the output sum is then

r40

where 8(v)= (l--Ima) is a polynomial of N-th power with respect to v.

Since its roots are rrie

(10.2.5) I
then, as is known [1661, 3
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N-I

W (Y

where B' (vk) is the derivative of B(v) with respect to v at value of

v = Vk;

Therefore, after transformations with regard to (10.2.5), we find

N-|

-= t~ ecp (-Ym- I (y).W (Y) = _ M, -
ko n

n=U

where the prime of the product denotes omission of a multiplier with

n = k. If we return to the initial variable u3 = 2a2y, then

N-1 ,n-hexp -- ,

--O f (I- --")
f" .R-----

Specifically, with a finite number of terms and also with condition

(5.4.19), which is frequently fulfilled in real storage devices, we

have [1671

W e. ) ,,
AM t - -" (10.2.6)

4=O

One can show [7, 168] that this series converges uniformly. Because of

this, let us integrate it term by term with respect to u3 to determine

the integral distribution function of the output noise, as a result of

which we find at U > 0

P(U = Bep (u > U)= W (,) du, =
U (10.2.7)

Then the probability of a false alarm comprises at U0 > 0 328
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F -=P(L')=. exP "- ) 1l I -- ,.-! - , (10.2.8)

where 1 = UO/2a2 is the relative threshold level.

i O78 7342 __9

Fig. 10.2.1. Dependence of probability of false alarm
on relative threshold.

Calculations by this formula are related to the need to fulfill

some rather cumbersome and precise calculations. The results of calcu-

lating the dependence of the threshold level on the probability of a

false alarm, carried out on a BESM-2 computer, are presented in Fig.
10.2.1.

if one proceeds from approximation of the distribution of output

noise by normal law, then, as shown in section 10.3,

2,9

F =0-,--- (0l

2- - W -

hence,

,i.02 .1 eenec0ofrobabiit off.l.ear

If the distribution law of output noise is approximated by "chi-
square" equivalent distribution (see section 10.3), then 329

FP p[ U,(l +T 2 I. I
m). ; 2F --J'(10.•2.1ii)

where
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P Q11, n) = n-2 ~ X~f -e dx ( 10.*2. 12)

is the integral "chi-square" distribution function [169]. The roots

12=U0/2a2 of equation (10.2.11) are determined from tables [170].

Consideration of Table 10.2.1 with the results of calculating the

reaive threshold by strict formula (10.2.8) and by approximate formu-

noise distribution by both normal law and by "chi-square" law lead to

* impermissibly large errors in determination of the response threshold.
The value of these errors decreases as m approaches 1, which is ex-

plained by the increased normalization of output noise.

Table 10.2.1.

Pf W4 , J___________ ____

0.8 19.5 1 12,9 17.2 26.4 15.0 '22.1
0,9 25.9 f20.9 24.9 34.1 23.7 V. 4

0,95 40.8 35,2 39.1 48.7 39.2 45.5

The errors are somewhat less with "chi-square" approximation than

with normal approximation. Therefore, when making rough, approximate

calculations one can approximate the output noise distribution by "chi-

square" law. Unfortunately, the calculating errors increase with re-

* spect to the threshold as the probability level of a false alarm

* decreases.

The frequency of false alarms rather than the probability of a false 330

alarm is frequently used when designing parameter detection and measure-

ment systems. In this regard let us calculate the indicated frequency

at the output of the considered storage device (Fig. 10.1.1, b).

The frequency of false alarms obviously coincides with the mean'I number of noise blips at the output level per unit time, which is writ-
ten in the given case by the formula
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v (U.) ;IlW (U,. n,) dn,,

where W(n3, A3) is the joint probability density of noise voltage n3 at
the output of the storage device and its rate of variation A3.

Determination of this density is very complicated. Therefore, let

us calculate the frequency of false alarms as the quotient from divi-
sion of the probability of a false alarm by the average length of the

r
(10.2.13)

Let us use the fact that the probability of a false alarm for the given

case is precisely calculated while the average length of the noise blip

is slightly dependent on the nature of noise distribution and therefore
this noise can be calculated approximately by a normal process whose

blips at a sufficiently high level (compared to the noise level) U0
have the mean length

(10.2.14)

where a 3 and M13 are the effective and mean values of noise,

respectively,

O aF, (wa) do (10.2.15)

SF, (a) do

is the mean square of noise frequency and F3(M is its energy spectrum.

Formula (10.2.14) is a generalization of the well-known formula 331

(see, for example, (10.78) in (201) for the case of a normal process

with zero mean value.

Accordingly, in the considered case
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Specifically, if the linear part of the receiver is equivalent to
a filter with bell-shaped amplitude-frequency characteristic

K (-) = K (w.) exp [- (- - (10.2.17)

where a = 0.0351/AF 2 , 6F is the bandpass at level 1//2, then the noise

at the input of a square-law detector when white noise with energy spec-

trum (1.2.4) is acting on the input has the energy spectrum

F, (a) = 2UK' (a.) exp 1-2a ( -'.

at the output of this detector [213]

zF, (a) = F, (0) exp [-4-',

and at the output of an analog storage device it is

F ( (nexp. [-w'1

I - 2 cos WT+m"

The last energy spectrum is a comb type with repetition quasi-period
27F = 2w/T and width 2wAF at level l//2. Since usually AFT >> 1, then as
shown in section 7.3, this spectrum can be averaged by the period of the

oscillating multiplier coswT when calculating the integrals in (10.2.15).

Then

n

r- ' E F. (,) din
0

Consequently, the mean square values of the noise frequencies at 332,
the output and input of an analog storage device essentially coincide.

Specifically, for the case of (10.2.17), 83 = 82 - 3.79dF. Sub-
stituting this expression into (10.2.16) and also the relations

2IA and a (.')',

which followfrom formula (10.3.9) derived below, we find

-in'51F~/ mIfT (10.2.18)
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where 1 is selected by the given probability of a false alarm by means

of graphs (Fig. 10.2.1). For example, if F = 10-6, m = 0.9 and AF - 1

MHz, then v = 11.1 Hz.

The frequency of false alarms were calculated for the case of quad-

ratic storage of noise at N = 20 and m = 1 by this formula and by the ex-

plicit formula presented in [15] to estimate the accuracy of the approx-

imate formula (10.2.16). The results of these calculations for F = 10-6

and 10- 9 differed by 5.3 and 18%, respectively. One can show that this

error in the value of the frequency of false alarms can cause an error

in determination of threshold level whose value is less than 1%.

Thus, the outlined method* of calculating the frequency of false

alarms with noncoherent storage provides accuracy quite acceptable for

practice.

10.3. Storage of Sequences of Nonfluctuating Pulsed Signals

1. Distribution Cumulants of Nonfluctuating Signal-Noise Mixture at
Output of Storage Device

Since integral (10.2.4) that describes the probability density of

the voltage of a nonfluctuating signal-noise mixture at the output of a

noncoherent storage device with exponential weight function has not yet

been calculated, an attempt is made below to calculate approximately the 333

indicated probability distribution. To do this, the numerical character-

istics of the output voltage are first determined.

The numerical characterittics of the random values which are more

frequently used are the moments of distribution of different orders

[15, 201-mean value, standard deviation and so on. However, other nu-

merical characteristics-cumulants-or distribution semi-invariants, or

more convenient when making the calculations [20, 132].

By definition, the derivative of the same order of logarithm of a

characteristic function at point v = 0 divided by jk is called a k-th

order cumulant:

This method was proposed by M. M. Leshchinskiy.
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X1 --! In 0 (u) =
aukO[ (10.3.1)

=r{ In W (x) ejvrx dxj.

Hence follows two important properties of a cumulant [132]:

1) A cumulant of any k-order of the product of random value x by

consta!*t a is equal to the product of the k-th power of a constant by
the cumulant of a random value, i.e.,

Sxh (ax) = atx& (x). (10.3.2)

2) A cumulant of any order of the sum of independent random values

is equal to the sum of cumulants of the same order of these values, i.e.,

xk(Y X" - t(x.). (10.3.3)

The latter property, called a composition rule [1321, is valid for

moments only for the first three orders. The advantage of cumulants is

included in this.

Let us determine the distribution cumulants of voltage at the input

of a recirculator, i.e., at the output of a square-law detector (Fig.

10.1.1, b). To do this, let us first calculate the characteristic func- 334
tion of this voltage. Using (10.2.3) that describes the characteristic

function of the value x = u2/20 2 , we find

( q' 12s'u A'V

Its natural logarithm or the cumulant function

q' j2.'v -n( -l9au
(u) - In 0 (v) = -2., (I -2 v)

has an n-th order derivative:

R) (V)=(21.'1"( - 1)1(1 -2ji 'V) l+ 2 i
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Dividing this expression by jn and assuming that v = 0, we determine

the n-th order cumulant of voltage at the input of a storage device:

X,,, = (. - 1)! (2*3)11 1 -+ .- (1.34

Let us then determine the cumulants of voltage distribution at the

output .3. Since the terms of the sum (10.1.3) are mutually indepen-

dent, then because of the composition rule (10.3.3)

h=O

where . (k) is an n-th order cumulant of the k-th term.
n

According to (10.3.2), the latter is related to a cumulant of the

same order of input voltage at moment t - kT of the following function:

= n,

Because of this, the n-th order cumulant of output voltage is

= (10.3.5)
k0

Accordingly, the cumulant of any order of voltage at the output of 335

a storage device with exponential weight function is related by a simple

function to cumulants of the same order of voltage at the input of this

device.

The derived expression is very general and valid in any case. It

is easy to generalize for storage devices with other weight functions.

In the special case of receiving a square-wave sequence of N non-

fluctuating pulsed signals on a continuous noise background, the first

N discrete values of input voltage will be a signal-noise mixture while

the remaining ones will be noise.

Let us denote by XA2 and Xn the n-th order cumulants of input volt-

age during the action of a signal-noise mixture and noise alone, respec-

tively. Then
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MnN ,iN

Xns X',, - + '° t--- (10.3.6)

if the number of pulses is high or the value of the weight multi-

plier is small, so that

Nnm <1 and x ,em 4Cx',,, then Y,, W)

When receiving a continuous noise oscillation

X4 -X".2(1--M- (10.3.7)

In the case of quadratic storage with exponential weight function

and Gaussian noise at the input, according to (10.3.4), formulas (10.3.6)

and (10.3.7) assume the form

xn, = (n - + n AL 0 In"Iv) (10.3.8)

and
(10.3.9)

,= (n- I1 ' --- -"

It follows from (10.3.8) that the output voltage has the asymmetry

coefficient
3

k=: %092(1 +m)(I~mn), 2 
I + -- q I -in') (10.3.10)"% 312 m m I+ '( -. n1i

and the excess coefficient 33

__6- ,_+, -- _ (10.3.11)
-1- 'M - (I-" )1

These formulas are valid both in the presence of a signal and in

its absence (q - 0).

Consideration of the dependence of the asymmetry and excess coeffi-

cients on signal/noise ratio (see Fig. 10.3.1) shows that the noise dis-

tribution has such large asymmetry and excess that it cannot even be

approximately considered normal. This coincides with the conclusion made

previously (see section 10.2).
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22 \

Fg. 10.3.1. Asymmetry and excess coefficients
as functions of signal/noise ratio.

If -he signal/noise ratio increases, both asymmetry and the excess

decrease (asymmetry somewhat more slowly than excess). A decrease of

these coefficients indicates the approach of the distribution of signal-

noise mixture to normal law with an increase of the weight multiplier

and with an increase of the signal/noise ratio. The latter is explained 337

by the fact that the distribution (10.1.2) of the signal-noise mixture

at the input of the recirculator varies significantly from exponential

law at q = 0 to a law close to normal at large value of q as the signal/

noise ratio increases. However, even at m = 0.95 and q = 2 the output
voltage distribution can only be assumed approximately normal.

The question arises of how to use the voltage cumulants determined

above at the outputof a noncoherent storage device with exponential

weight function for approximate, but rather precise calculation of the

distribution law of this voltage. This problem is also considered below.

2. Expansion of Probability Distribution Function of Output Voltage to
Edgeworth and Laguerre Series

Asymptotic expansion of the distribution function of a random value,

based on normal distribution, is accomplished by an Edgeworth series

[1321.
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For the probability density of voltage u it has the form

I'?) (X 6- 24x -2

I ____ 1ky
12o,2x ( 1296

where

-- '"W x 10 (x) = , (x);

and Xn is the n-order cumulant of voltage u.

This series converges more rapidly, the closer the investigated

process is to normal, i.e., the less the asymmetry and excess coeffi-

cients and so on. At k = y = 0 and X5 = '- = 0, the probability dis-

tribution is normal

t(u) = . exp [ 2., (10.3.13)

Relation (10.2.9) also follows from (10.3.9) and (10.3.13).

By integrating (10.3.12) with respect to u from U to , we find an 331

Edgeworth series for the integral distribution function:

k?,) (10.3.14)TT ") -7T '5 (Y) + ,

where y= U-.

The remainder term of the Edgeworth series is on the order of the

first discarded term. The tables of (126, 171, 172] should be used when

calculating the distribution functions using an Edgeworth series.

Edgeworth series can be used to calculate the distribution functions

only if the distribution is close to normal. The criterion of this

proximity is the smallness of the asymmetry and excess coefficients and

also the coefficients .x.jx and so on. These coefficients can obviously

be regarded as small if their absolute value is less than 0.1. In this

case it is usually sufficient to take into account no more than four

terms of this series.
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-74-

if there is no proximity of the considered and normal distribu-

tions, the Edgeworth series converges so slowly that calculations are

possible only by using a digital computer.

If the probability distribution differs strongly from normal and

has great asymmetry, for example, due to the probability density of neg-

ative values of random voltage being equal to zero, which is specifically

observed after a square-law detector and an insufficiently efficient re-

circulator or a different filter, then expansion of the distribution

I functions into a series by functions of the Laguerre orthogonal system

may yield better results (173-175).
Go

W(u) = - xe - 4g,(x), (10.3.15)
4=0

where

A (x)=L ex-- t(x-, e-) (10.3.16)

is a generalized k-th order Laguerre polynomial [251: 3-3

2

a= I; x= -u; go= ; gstg 1 =0"
5K

3X2

g, 1" 6 +
34 6-_,, _34 /

2" ( 4 21 ',g '
,, t + 4;

2 4x 2z . 2g, ---- , 6 --5 6-T -- 74. 1

40z? 2
g,:= 40%21 [(30

+ ' 6) K'2 )- R '.-.

4 0 and so on,

and r(x) is a gamma-function.
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Consequently, the coefficients of this expansion, like those of

the Edgeworth deries, are expressed by distribution cumulants of random
voltage u.

Integrating (10.3.15) with respect to u within the limits from U
to -, we find a Laguerre expansion for the integral distribution

function

P(U) =P --' U; 2 R
\' (10.3.17)

hwl

where the "chi-square" integral distribution function p(×2, n) is char-

acterized by (10.2.12).

The Laguerre series (10.3.15) and (10.3.17) can be used to calculate
the probability densities and distribution functions in the case when 340
the distribution of the considered random value is close to "chi-square"
distribution. The criterion of this proximity is the smallness of the
expansion coefficients g3, g4, g5 and so on. In this case calculation

carried out by using only the zero term of these series alone yields
satisfactory accuracy in most cases.

If the storage device were ideal, i.e., if it added N blips of the
received oscillation with weight equal to one and if it were preceded by
a square-law detector, the voltage of the stored noise would be precise-
ly distributed by "chi-square with 2N degrees of freedom" law [11, 13,
133]. Actually, in this case, according to (10.3.4) and (10.3.5):

a+l=--=3 N; ,_.2 g,= =0

and

P(IP(UL; 2N).

If the samples (storage) are added by law (10.1.3), where m = 0.8-

0.95 and if the number of samples is infinitely large, one can assume
that the output noise is also distributed by approximately "chi-square"

law. Then from (10.3.9) and (10.3.17) follows
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P(U) ~P [U+m); 2
.a ' I-m '

which coincides with (10.2.11) at U = U0 and P(U 0 ) = F.

It is shown in section 10.2 that the assumption made 
above about

the nature of output noise distribution is rather cumbersome, 
although1acceptable for approximate calculations.

3. Threshold Signals in Absence of Fluctuations

The probability of detection with exponential weight storage 
of

nonfluctuating signals can be calculated by using the first four terms

of an Edgeworth series: 
34

D =-P (U ) - +- -4 ( j_ T o(')()-
sI (10.3.18)

TT 'P(s) (X) - 72 (X),

wherex= - -, and 'M3, k3 and Y3 are calculated by formulas (10.3.8),

(10.3.10) and (10.3.11).

Being given U0 , based on the level of the probability 
of a false

alarm and the value of the weight multiplier of the recirculator, 
the

signal/noise ratio and the number of pulses in the sequence, one can cal-

culate the cumulants of the first four orders, the asymmetry and 
excess

coefficients and then the probability of detection.

0,9

-, I

Fig. 10.3.2. Characteristics of detecting nonfluctuating

signals307



The detection characteristic with noncoherent storage of nonfluc-

tuating signals, calculated by formula (10.3.18), is shown by curve 3

as an example in Fig. 10.3.2. The detection characteristics with coher-

ent exponential weight storage of a completely known (curve 1) and known

with the exception of the initial phase (curve 2) sequence of nonfluc-

tuating signals are plotted in the same figure for comparison. All

these characteristics have the same form.

Curve 4 in the same figure reproduces the detection characteristic 342

with noncoherent exponential weight storage of nonfluctuating signals
plotted with approximation of the instantaneous voltages of noise and

signal/noise mixture by normal distribution law at the output of a non-

coherent exponential weight storage device. Comparison of curves 3 and 4

shows the unsatisfactory nature of normal approximation of the distribu-
tion laws of random voltages at the output of a noncoherent exponential

weight storage device.

The threshold signals can be calculated by the following method.

Let us ascertain the level of detection probability and let us determine

the first approximation of the signal/noise ratio corresponding to it q0

from the relation

D=I -- (U-,

which, using (10.3.8), is transformed to the form

q( -m- 2 It(I - m)- II
8 z + q.2 ( 2Ni -

where z = argO(2D - 1). Specifically, z = 0 at D = 0.5 and z = 0.9062 at

D - 0.9.

The derived equation is biquadratic in the general case (z 0 0) with

respect to q0 . Its solution at D = 0.9 is as follows:

8 6.768'- m (I + A)+
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+ 2,563 "
X VI +4 1,(1-_ _,j(, +f.nA( + I,, (10.3.19)

At D = 0.5, due to the fact that z = 0, the first approximation is con-

siderably simpler:

21t,(- - }112 (10.3.20)

To refine the result obtained, let us assume that correction 6q is 343
small compared to the first approximation. Representing (10.3.18) by

the function D(q) = D(q 0 + Aq) and expanding the latter into a Taylor

series, we find

D = D (q. + Aq) - D (q.) + Aq = D (q.) + D'(q)Aq.

Since D(q0 ) is the result of substituting q0 into (10.3.18), in
which the first term of this expression approaches D and the sum of the

next three terms assumes some value AD, then D % D + AD + D'(qo)Aq, hence,

- AD AD

where

e"dt.
2 UO-.14

By differentiating the last integral with respect to the parameter, we

find
I'.= ;p [_( U9o-,g,. )s] [ U,.- i,,. dx, ± ,,

Specifically, U =x, and D',-(2, 1 '.x',3, at D = 0.5 and

o 1755e,' -,6407X. K~at D 0.9.
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Because of (10.3.8) and the previous formulas, we have at D = 0.5

Aq 0,3348 I--* ' +- q0 0 --
+ +M,4 q.( ;_v)[1 _ + q ( _ N)] (10.3.21)

and at D = 0.9 we have

Aq s'w-.(1.322
O. 1755q, (I--N) f I-1.2814 (1+mn ' ) (10.3.22)

X ! '+ q2 (I _ .,N ] -1/2

where 34

3 2

AD= 0,05634 (1 +m)( _ 1/)2  + 2q (I -MM
1 + in+ M, I + q5(I1-W)13/2 +

+0,07637 1 -in' I +2q (I - M4N)l +,. [ + q;(-,' si- (10. 3.23)

-0,03589 0 + M2) (! -- MS) [I+ q0(Ia (3N - '
+++2 + (I ,..-) .

The greater simplicity of the expression for correction at D = 0.5 is
explained by the fact that x = 0 and * (0) = 0 in this case. There-

fore, it is sufficient to take into account only the first two terms of
the Edgeworth series when calculating the detection probability since its

remainder term is on the order of the third term, which is equal to zero
in the given case. Expression (10.3.21) is also more precise since the
segment of function D(q) corresponding to it can be assumed linear with
greater accuracy than the segment adjacent to D = 0.9.

Calculations show that the relative value of the correction at m >

> 0.8 and N > 4 does not exceed 1.35%. The value of this correction

decreases as m approaches 1 and as N increases.

Consideration of the dependence of threshold signal/noise ratios on
N (Fig. 10.3.3)* shows that the threshold ratio decreases as the number

The following notations were used in this figure and also in the
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of pulses increases until mN becomes negligible. The threshold ratios

are lower with sufficiently large number of pulses, the greater the

probability of a false alarm and the closer m is to 1. The level of

detection probability is hardly dependent on the threshold ratio: the

latter are only 10-20% higher at D = 0.9 than at D = 0.5.

345

Xb)

*,o-

Fig 10330epnec o-hehodrto

2- , to-

t -o-?

b)

Fig. 10.3.3. Dependence of threshold ratios

on number of stored nonfluctuating signals.

subsequent figures (Figs. 10.3.4, 10.3.5, 10.4.2-10.4.4, 10.5.1 and 344
10.5.2): curves corresponding to m = 0.8 are denoted by dashed curves,
those for m = 0.9 are denoted by solid curves and those for m = 0.95
are denoted by dash-dot curves.
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Fig. 10.3.4. Effect of storing nonfluctuating signals
as function of their number.

The dependence of the storage effect on the number of pulses are

shown in Fig. 10.3.4.* The storage effect is understood as the power

gain of threshold signals due to the use of only the square-law detec-

tor of the storage device with exponential weight function. The stor-

age effect is higher, the greater the number of pulses in the sequence

to be stored and the closer m is to 1. The storage effect is hardly
dependent on the probabity levels of a false alarm on correct

detection.

If the number of pulses is sufficiently high, the value of the

storage effect is approximately 4.5-5 at m = 0.8, 8-9 and m = 0.9 and
13-15 at m = 0.95.

Accordingly, the use of a storage device with exponential weight
function after a noncoherent detector permits one to achieve a greater

power gain of threshold signals, which indicates the feasibility of

this use.

The dependence of the power loss of threshold signals upon replace-

ment of coherent exponential weight storage of signals with unknown 347

*See note on p. 310.
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initial phase by noncoherent storage is shown in Fig. 10.3.5.* This

loss increases as the number of pulses, the weight multiplier and the

probability level of a false alarm increase and as the probability

level of detection decreases. The latter is explained by the fact that

in this case the threshold signal/noise ratio decreases and because of

this signal suppression by noise in the amplitude detector increases

[129].

"'f"'i -"-"" -4'

- ' 0 oI ' / - .,
TV 0-1

a Is 32 54 IZ V 4 8 5 3Z 64 120 N6)J b.I

Fig. 10.3.5. Loss during noncoherent storage of non-
fluctuating signals as function of their number.

10.4. Storage of Sequences of Pulse Signals Fluctuating in Unison

1. Distribution Cumulants of Stored Mixture of Signals and Noise
Fluctuating in Unison

The detection characteristics of signals fluctuating in unison are

usually calculated in the following manner [12, 13, 133]. The expres-

sion for the detection probability of a nonfluctuating signal of specif-

ic amplitude V is taken. It is also assumed valid with a fluctuating

signal, having used the given value of amplitude, but characterizes 348

the conditional probability of detection. Having averaged it statis-

tically for all possible values of amplitude, we find the desired detec-

tion probability.

This procedure can also be used essentially in the given case by

averaging (10.3.18) for all possible signal/noise ratios with regard to

(6.4.1):

See note on p. 310.

313



O~ (q')2 7x(4je.

However, it is very difficult to calculate this integral since the con-

ditional probability D(q2) is a very complex function. Moreover, since
expression (10.3.18) is approximate, it is difficult to provide an es-

timate of the error of this calculation beforehand.

Determination of the numerical characteristics of distribution of

a mixture of a fluctuating signal and noise at the output of a storage
device and using them to calculate the distribution functions and then

the detection characteristics are simpler.

Expression (10.3.8) is also valid with harmonious fluctuations of
a signal. It characterizes the conditional distribution cumulant of

output voltage Wn3 (q2). To determine the unconditional cumulant Xn3,
statistical averaging must be carried out with regard to (6.4.1). How-

ever, direct averaging of an n-th order conditional cumulant leads to
the correct result only at n = 1, i.e., one can average directly only
a first-order cumulant coinciding with the mean value m13.

Direct statistical averaging is possible only for the initial mo-
ments of any order. Actually, by definition [20], the n-th order ini-

tial moment of voltage u, provided that the square of the signal/noise

ratio q2 is observed, is

+00
L'F2 (a. q') dii

M (q2) = +CC OW (ulq) du (q')

hence, it follows that: 34S

M. (q') W (q) S ur (. q') du.

Therefore, the total (unconditional) moment of any order n

7= +5 OW',(., q') dudq = m,, (q') W, (q'l dq2 (10.4.1)
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is the result of direct statistical averaging of the conditional ini-

tial moment o- the same order.

In similar fashion, the n-th order conditional central moment (at

n > 2) is,.by definition
I,0

M[ --'4 (q')]% W, (a. q') d u -

[u-r , (q)W 3u ,'d

+W)
hence,

. (q') F,(q') dq" - dq" A [i - m, (q2))"W, (u. q')du.

The last expression differs from that for the complete (uncondi-

tional) central moment

M.= "dq, (u -,n,) - , W. q') du,

where mI is the first-order total moment.

This also proves the statement made above on the possibility of

direct statistical averaging of only the initial moments of any order.

By directly averaging the first-order conditional cumulant (moment)

(10.3.8), we will have

MCI I +"P(I - l (10.4.2)

Changing from conditional cumulants (10.3.8) to conditional initial 3

moments by means of known relations (20, 1321, averaging them with

regard to (6.4.1) and again changing from the total initial moments

to total cumulants, we find
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2. Distribution of Stored Mixture of Signals and Noise Fluctuating in
Unison

It follows from (10.4.4) that the distribution of a mixture of

signals and noise fluctuating in unison at the output of a noncbherent

storage device has asymmetry k = 2 and excess y z 6 (calculation by

explicit formulas (10.4.3) for the most unfavorable case of m = 0.8, 35
N = 4 and p2 = 7.21 yields k = 1.9877 and y = 5.943. The latter differ

from approximate values by -0.615 and -0.95%, respectively).

Since the asymmetry and excess coefficients are so high, the use

of an Edgeworth series to calculate the detection characteristics and

threshold signals is essentially impossible due to its slow convergence.

It follows from (10.1.2) and (10.3.4) that the noise at the output

of a square-law detector has exponential distribution with cumulants

of any order n
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X.2= (n-1)1 (2a')n (10.4.5)

and the asymmetry and excess coefficients ar.e equal to 2 and 6, respec-

tively. This leads to the idea that the distribution of a stored mix-

ture of signals and noise fluctuating in unison and unstored noise are
similar. This is explained in the following manner. Because of the

total correlation of signals fluctuating in unison, they are stored by

the same laws as are regularo signals. However, the result of their

storage remains random and the nature of its distribution is the same

as that of unstored noise.

Comparing (10.4.2) and (10.4.4) to (10.4.5), we conclude that the
second-, third- and fourth-order cumulants both of the stored mixture

and of unstored noise are expressed by similar formulas, while the
formulas for first-order cumulants differ somewhat. Therefore, unlike

unstored noise, distribution of which is exponential (see (10.1.2) at
V = 0), the stored mixture of signals and noise fluctuating in unison

should have exponential distribution shifted along the voltage axis

where a2 and V0 are constants which are subject to determination. One

can show that this distribution has the cumulants

u-=V.+2,: and WX =(n-l)t(.)at n>1.

It follows from the expressions for the first- and second-order cumu- 35

lants that 24-- and V=.x.

Thus, a stored mixture of signals and noise fluctuating in unison

is distributed with probability density

and at U>x,,-x"2 has integral distribution function

P(= W(-,)du,exp (10.4.6)
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To ascertain the validity of the assumptions made above, let us

calculate by two different methods the probability of excess stored

mixture of a level equal to a first-order cumulant. It follows from

(10.4.6) that P(xj3)=e-'=0.3788 and calculating (10.3.14) using an Edge-

worth series, we find

NJ,)=±- I I - 0 ()I+ -k,()(0)

f 0..-- .2.0,39894 = 0.,3702.

Therefore, distribution (10.4.6), although it is approximate, it is

quite suitable for calculations of threshold signals. In this case

their accuracy at D = 0.5 is apparently higher than at D = 0.9.

3. Threshold Signals During Harmonious Fluctuations

According to (10.4.6), the detection probability during noncoherent
exponential weight storage of signals fluctuating in unison comprises
(see curve 2 in Fig. 10.4.1)

D exp - 1, (10.4.7)

D 353

Fig. 10.4.1. Detection characteristics of fluctuating
signals (1 and 2-coherent and noncoherent storage of
signals fluctuating in unison, respectively; 3-nonco-
herent storage of independently fluctuating signals).
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It follows from (10.4.2), (10.4.4) and (10.4.7) that

10 -M)- + I--n ( + ) -P (1 -i - (10.4.8)

0(-m") in..

or for rough calculations

) (10.4.9)

The dependence of the threshold ratios on N, calculated by formula

(10.4.8) (Fig. 10.4.2*) have essentially the same character as during

storage of nonfluctuating signals. The main difference is included in

the fact that the threshold ratios at D = 0.9 are 2.6-2.7-fold greater

than at D = 0.5. As in the case of coherent storage (see section 6.4),

this is the result of signal fluctuations.

The dependence of the storage effect of signals fluctuating in

unison (Fig. 10.4.3*) on the number of stored pulsed signals hardly

differs from similar functions in the absence of fluctuations (Fig. 365

10.3.4). True, the storage effect is somewhat less in the case of

harmonious fluctuations.

The dependence of the power loss upon replacement of coherent stor-

age by noncoherent on the number of pulses (Fig. 10.4.4*) has the same 356

nature as during storage of nonfluctuating signals. With harmonious

fluctuations, although the loss is somewhat greater, it is still com-

paratively small and does not exceed 3 at m < 0.95.

VI 10.5. Storage of Sequences of Indpenedently Fluctuating Pulsed Signals

1. Distribution Cumulants of Stored Mixture of Independently Fluctu-
ating Signals and Noise

Independently fluctuating (from pulse to pulse) pulsed signals are

similar in their properties to noise (see section 6.4). Because of

this, a mixture of a fluctuating signal and noise at the output of a

See note on p. 310.
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Fig. 10.4.2. Dependence of threshold ratios on number of
stored signals fluctuating in unison

square-law detector is distributed, like noise alone, by exponential 356

law:

W() 2(fit+, V) Ix -I W.' ,1) r ,) .

The only difference is that the role of output a2 at the input of

the detector is played by the sum of signal n2 and noise outputs.

Therefore, according to (10.4.5), the voltage of a mixture of indepen-

dently fluctuating signal and noise at the output of a detector has an

n-order cumulant

xs.(n--)!) 2 ('+ 2 )]-. (10. 5.1 )
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Fig. 10.4.3. Storage effect of signals fluctuating in unison
as function of their number.
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Fig. 10.4.4. Loss during noncoherent storage of signals fluc-
tuating in unison as function of their number.

This expression can be found more strictly by statistical averaging 351

of the conditional initial moments of distribution with regard to

(6.4.1) calculated by means of (10.4.5) and subsequent conversion from

the derived total initial moments to cumulants.

Because of (10.3.9) and (10.5.1), the stored mixture has the cumu-

lants

,,,,, = (,,- i); l!+ P2).( R ,, )+ .,I l .5

2. Threshold Signals With independent Fluctuations

The asymmetry and excess coefficients of a stored mixture of inde-

pendently fluctuating signals and noise, calculated by using (10.5.2), 357
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hardly differ from similar coefficients for stored noise (Fig. 10.3.1)

and have comparatively large value. However, expansion of the integral

distribution function into Edgeworth series (10.3.14) in the middle

part of this function (at P(U) > 0.3) converges so rapidly that the

calculations of both the detection characteristics and of the threshold

signals are possible (although very laborious) even without using a

digital computer.

Thus, the detection probability is calculated by formulas (10.3.18)

and (10.5.2). An example of the detection characteristic calculated in

this manner is curve 3 in Fig. 10.4.1.

The threshold ratios with independent fluctuations can be calculated

by the same method as in the absence of fluctuations. In this case the

threshold ratio P is calculated as the sum of the first approximation

and the correction:
P=P+AP' (10.5.3)

where at D = 0.5

MW (10.5.4)

and

"p=0,167 I--.t (I +,)(I- m3 ')+,nSN (10.5.5)I + M + .,,(a + ) -,. )+,,, ,

and at 0 = 0.9

0 -M)- 1 + 1,6421 o-_-__ _ -M .V) +

(I - 1.642 X
I + (M i

+i 0 - M ) - I 
+ 1,642 1 'q

X I-MV X (10.5.6)

-(I -- 1,642 ' +~- M' .t)--1)2--1. 642 1 - " M '
1
:

* (I-n')
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+ )- + M2)+ mIl1/ 2X 358

0.3 51p, (I - mN) X

XAD (10.5.7)
S1.2814 (1+ 1)(1 +

AD =,0634(Q + m) (1 M) x
( + 

+ 
I) + M

-0,07637

The dependence of threshold ratios on N (Fig. 10.5.1*) calculated

by these formulas has the same nature as in the absence of fluctua-

tions (Fig. 10.3.3) and with harmonious fluctuations (Fig. 10.4.2).

True, unlike the case of harmonious fluctuations, threshold ratios dif-

fer by only 20-30% at D = 0.5 and D = 0.9. This is the result of great-

er normalization of the distribution of the stored mixture.

The dependence of the storage effect of noise-like signals on the

number of pulses (Fig. 10.5.2*) have approximately the same nature as

in other, previously considered cases (Figs. 10.3.4 and 10.4.3).

However, there is yet another significant difference included in

the higher value of the storage effect in the considered case both at

D = 0.5 and especially at D = 0.9. This is explained by the fact that

the distribution of a mixture of independently fluctuating signals and

noise varies very strongly from asymmetrical exponential distribution

to distribution close to normal as a result of storage. Because of 361

this, the storage effect at D - 0.5 as the square of the ratio of the

median**distribution is greater than in the absence of fluctuations

See note on p. 310.
j The value corresponding to probability 0.5 is called the median dis-
tribution of a random value [176].
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and during harmonious fluctuations when the nature of the distribution

does not vary as a result of storage.

5 359

I. I 7 I,.B.O.S

p, - - - .- __
°
_
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D=O. 0

z,6

, a 16 32 .,, ,

1.20

b)

Fig. 10.5.1. Dependence of threshold ratios on number of

independently fluctuating signals.

The very great effect of storage at D - 0.9 and of independent

fluctuations is also explained by significant variation in the nature

of distribution of the signal-noise mixture as a result of storage. At

D - 0.9 the storage effect is equal to the square of the ratio of 90%

voltage distribution quantiles of a stored and unstored mixture (90%

quantile is a random value which corresponds to 90% probability [176]).

Prior to storage, the signal-noise mixture is distributed by exponential

law, the square of the 90% quantile of which is greater than the square
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Fig. 10.5.2. Effect of storage of independently fluctuating
signals as function of their number.

of the median by a factor of 6.6. After storage, the indicated mixture 361

is distributed by approximately normal law in which the squares of the

90% quantile and median differ by a factor of 1.5. Therefore, the ef-

fect of storage at D = 0.9 is approximately (6.6/1.5) = 4.4 times greater

than at D = 0.5.

The latter is in good agreement with the calculated values of the

storage effect (see Fig. 10.5.2).

Thus, noncoherent storage is especially effective during detection

of independently fluctuating pulsed signals with high degree of proba-

bility. It permits one to achieve a 25-90-fold gain in receiver sensi-

tivity at m - 0.8-0.95.

This is not surprising since the considered system is essentially

325
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an appro::imation of an optimum detector of independently fluctuating

pulsed signals [10-13, 177].

It is also essential to note that the storage effect of independent-
ly fluctuating signals with weight multiplier 0.8 < m < 1 may exceed

the number of stored pulses by a factor of 1.5-2 (Fig. 10.5.2, b) at
D = 0.9 (and generally upon detection with high probability). Con-

sequently, a sequence of several pulses separated in time and frequency
by those values so that their fluctuations are mutually independent 36:
upon reception can be transmitted instead of studying a single pulse

of greater energy in the case of its fluctuation during reception.
The energy of this sequence can be less by a factor of 1.5-2 than that
of a single pulse, while receiver sensitivity will be the same.

A similar situation is also observed with ideal (unweighted) stor-

age of independently fluctuating signals [12, 13].

10.6. Some Generalizations

1. Storage of Nonsquare-Law Sequences of Pulsed Signals

Noncoherent exponential weight storage of square-wave sequences of

pulsed signals, i.e., those having identical amplitudes, was considered
above. However, in some cases (for example, during reception of radar
signals in the circular scanning more), the sequence of pulsed signals

has a nonsquare-wave enveloped. The method outlined above for calcu-

lating the threshold signals may also be applied to this case. The
probability of a false alarm does not depend in this case on the shape
of the envelope of the sequence and is calculated by formula (10.2.8).

The cumulants of the output voltage of the signal-noise mixture in the
absence of fluctuations are calculated by the more general formula

(10.3.5) rather than by formula (10.3.6), which.permits one to take in-

to account the nonsquare-law nature of the envelope of the sequence.
The expressions found in this manner for these cumulants are substi-

tuted into formula (10.3.18), which permits one to calculate both the
detection characteristics and the threshold signals. If the minimum
threshold signal in the case of a square-wave sequence always corre-
sponds to the last pulsed signal of the sequence, then the minimum
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threshold signal with nonsquare-wave envelope is observed at a differ-
ent moment of time [121]. The latter can be determined by investigat-
ing (10.3.18) for the extreme value.

The threshold signal/noise ratios with quadratic exponential weight 363

storage of sequences of pulsed signals whose envelope has triangular,

cosine and square-wave shape (curves 1, 2 and 3, respectively) with
identical maximum amplitude are shown as an example [1781 in Fig. 10.6.
1. Consideration of them shows that variation of the shape of the
envelope of the sequence from triangular to cosine and then to square-
wave with the same number of pulses leads to a decrease of the thres-
hold ratios. This is explained by an increase of the energy of the

pulsed signal sequence.

\\ " \ B=.O's
N. ,,M" =0.9

ze - .- _______

Fig. 10.6.1. Dependence of threshold ratios on N for different
sequences.

A real sequence of pulsed signals can be replaced by an equivalent

square-wave sequence with amplitude equal to the maximum amplitude of
a real sequence when calculating threshold signals. The number of

pulses of this equivalent sequence can be calculated by the formulas

presented in [178).

2. Noncoherent Double Storage Device 364

To further reduce the threshold signals after a noncoherent single

storage device (Fig. 10.1.1, b), one can connect an additional
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recirculator. In this case a noncoherent double storage device will

be formed (Fig. 10.6.2, a).

(1) (3)

a)

b)

Fig. 10.6.2. Noncoherent double (a) and two-stage (b) storage
devices.
Key: (1) Square-law detector; (2) Flip-flop; (3) Threshold
device.

Unlike equation (10.1.3), which establishes the relationship between

the voltages at the input and output of the first recirculator, the vol-

tage at the output of the second recirculator is

U.(t W (k --) mhu, (t - W). (10.6.1l)

k-0

The last expression is easily found by convoluting the ip ut voltage

u2 (t) with pulse characteristic of two recirculators

h.()= (k + 1 ) ml & (t - kT).
h-0

Equations (10.1.3) and (10.6.1) shows that the law of double stor-

age differs from the law of single storage by the presence of an addi-

tional multiplier k + 1 with weight multiplier mk. Therefore, the ex-

pression for the probability of a false alarm with quadratic double 365.

storage can be found directly from formula (10.2.8), having replaced

mk in it by (k + l)mk, as a result of which

F = ex ( + ) ( + ) "(1 0 .6 .2 )

This formula, like the results outlined below, was found by M. M.

Leshchinskiy (179, 180].
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The dependence of the probability of a false alarm on the relative

threshold is plotted in Fig. 10.6.3.

55 70 75 fr
F\ 8

'0-9 __ _

2 0 220 230 I M.0'9

Fig. 10.6.3. Probability of false alarm as function of relative
threshold with double storage.

Since the n-order cumulant of output voltage by analogy with

(10.3.5) is in the given case

h=A

then according to (10.3.4), with double storage of a square-wave se-

quence of N pulsed signals, unlike (10.3.8)

[(k+)"ma"+ (k + l) ~ ~ ( (10.6.4)x, ( )(n - I)I I k+I-k k+I)m
4=0 =

The threshold signal/noise ratios (Fig. 10.6.4, a and b) and the 36

storage effect (Fig. 10.6.5, a and b) were calculated by formulas

(10.3.18) and (10.6.4). Comparison of the curves plotted on these

figures and in Figs. 10.3.3 and 10.3.4 indicates that a double storage

device with m = 0.8 permits one to achieve the same storage effect

(gain) both in the noncoherent and coherent case (see section 8.4) as 36

a single storage device with m - 0.9, while a double storage device

with m - 0.9 is equivalent in this sense to a single storage device

with m - 0.95. The use of a second recirculator in a noncoherent stor-

age device permits one to achieve an additional power gain from 1.4 to

1.8. The value of this gain is somewhat less than with coherent stor-

age. This is explained by the nonlinear nature of the amplitude

(square-law) detector.
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a) b)
Fig. 10.6.4. Dependence of threshold ratios on N with double
storage.

m4 ' -,?9 6- -,,=0.9 Vf7T...."t
a.-- I8 itO'" --- 0,8 x

a8- z- Ole
I _ , I 1

5 /32, Z_ ,8-- / , 64 as 7m
a) b

Fig. 10.6.5. Storage effect as function of N with double storage.

3. Noncoherent Two-Stage Storage Device 3

The considered storage device (Fig. 10.6.2, b) differs from a non-
coherent double storage device (Pig. 10.6.2, a) only by the fact that
the delay time in the feedback circuit of its second recirculator is
M times greater than the repetition quasi-period of the pulsed signals.

Since according to (9.1.6) the pulse characteristic of series con-
nection of two idealized recirculators (i.e., with unlimited bandpass

of the feedback circuit) with delays by T and MT
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A EWhM) + I
Z- - T),

where z ml-M, due to which the voltage at the output is

iOD 
ZE( klM|f +It

nt_, - . (t - k7).
-

then by analogy with noncoherent single and double storage devices

[see (10.2.8), (10.6.2), (10.3.8) and (10.6.4)] the probability of a

false alarm in the considered storage device is

o~ r _ z(z --) ]
0 , ins ('M) + (10.6.5)

n, mh fZE R M) -t I

and the n-order cumulant of output voltage of a mixture of nonfluctuat- 36

ing signal and noise is

(2c' (n E~k +I +Z-1 (10.6.6)

Using these expressions and formula (10.3.8) by the method outlined

above, one can calculate the threshold signals and the storage effect

with noncoherent two-stage storage. In this case the results are ex-

pected that indicate the possibility of using a noncoherent two-stage

storage device to store a rather large number of pulsed signals (on the

order of hundreds) with losses slightly exceeding those with ideal

(i.e., unweighted) noncoherent storage.

4. Method of Accounting for Final Bandpass of Recirculator With
Noncoherent Storage

The different noncoherent storage devices were considered above on

the assumption that the feedback circuit of the recirculator has un-

restricted wide bandpass. This assumption is valid if this bandpass

is much wider than the spectrum of the pulsed signals being stored and
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accordingly is wider than the bandpass of the prestorage and predec-
tor filter F1 that simulates the linear part of the receiver.

The assumption indicated above was made only to simplify the cal-
culations. The problem of threshold signals when using different non-
coherent storage devices can also be solved with a final bandpass of
the feedback circuit of the recirculators used in them. The method of
calculating the threshold signals for the case of noncoherent single
storage device is outlined below (Fig. 10.6.6, a).

( 3 (4) 369

P' I

(31

b)

-__ _~3~

C)

Fig. 10.6.6. Equivalent block-diagrams of noncoherent single
storage device.
Key: (1) Radio-frequency filter; (2) Square-law detector; (3)
Filter; (4) Threshold device; (5) To attenuators, delay lines
and filters F2; (6) Flip-flop

It is easy to ascertain that the block diagram of this storage de- 368
vice can be represented in the form of an equivalent block diagram 369
(Fig. 10.6.6, b) with addition of the output voltages of an infinitely
large number of parallel channels. In this case the k-th channel
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(where k = 0--) consists of series-connection of k attenuators, filters

F2 and delay devices by time T. Obviously the k attenuators with

transfer coefficient m are equivalent to a single attenuator with

transfer coefficient mk, the k delay devices by T are equivalent to a

single delay device by time kT and the k filters F2 are equivalent to

some filter F2k. Specifically, if filter F2 has a bell frequency 37

characteristic

K. <.) exp [-In ± (o/2 AF.).

where AF 2 is its bandpass at level d, then filter F2k will also have
bell frequency characteristic with bandpass AF2k =k-1/2 'F 2 .

Because of this, the equivalent circuit (Fig. 10.6.6, b) can be
represented in the form shown in Fig. 10.6.6,c. In this case the out-
put voltage of the storage device is

, Wt = U3 Wt + E .(t = , + (t - k7)
k=0

Since these terms are mutually independent due to (7.2.2), the n-order

cumulant of output voltage is

where )cnm+) is the n-order cumulant of voltage at point(2k + 2) of the

equivalent circuit at moment t - kT. This voltage is the output voltage
for a typical radio engineering link consisting of a filter Fl, square-

law detector and filter F2k. Any order cumulants of this voltage can

be calculated by the method developed by Emerson [181]. The values of
these cumulants for the special case, but one important for practice,

when filters F1 and F2 have bell characteristics, are presented in [20].

The probability of a false alarm, the relative threshold level,

detection characteristics and threshold signals can be calculated by

the known cumulants of output voltage according to the method outlined

in sections 10.2 and 10.3. Unfortunately, these calculations are re-

lated to very cumbersome calculations.
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CHAPTER XI

PROBLEMS OF PRACTICAL REALIZATION OF ANALOG PULSED SIGNAL STORAGE DEVICES

I 11.1. CHARACTERISTICS OF DELAY DEVICES USED IN ANALOG STORAGE DEVICES

1. Types of Delay Devices Used

The main component of any analog storage device is the delay device

by time on the order of several milliseconds, equal to or a multiple

of the repetition period of the pulsed signals of the radio engineering

system. For effective storage of these signals, the bandpass of this

device, as shown in section 7.4., should be at least double the value

inverse to their length. Accordingly, the delay device of a microsec-

ond pulsed signal storage device should have a bandpass on the order

of 2 MHz.

Ultrasonic delay lines (UZLZ) are usually employed as delay devices

with delay time on the order of several milliseconds and with bandpass

on the order of several megahertz. The main advantage 4. in the long

delay time per unit length, which is explained by the com~paratively

low propagation velocity of ultrasound in the conducting medium (on the

order of 1.5-6 in/ins). Both liquid and solid materials are used as the

conducting medium. The parameters that characterize the main physical

properties of the materials most frequently used as the acoustic lineI are presented in Table 11.1.1 [154].
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A liquid acoustic line usually fills a steel pipe on the ends of
which are mounted in a special armature piezoquartz converters of elec-
tric to ultrasonic oscillations and ultrasonic to electric oscillations 372
(Fig. 11.1.1, a). The quartz comes into con'tact with the liquid on

both sides. To eliminate multiple reflections from the ends of the
tube, the walls are tapered at an angle of 450.

t Table 11.1.1
Acoustic Line Velocity, Attenuation, Temperature Velocity

Material in/ms _dE/ Coefficient at 20*C

Mercury 1.43-1.5 8.3-214

4Fused Quartz 3.76 0.68 510-6-2.3*102

SjGlass 4.5-5.6 22.8 -5.8.10-5

Magnesium Alloys 5.6-5.8 10-20

Steel 4.7-6.1 9-44 4.10-4

Aluminum 5.1-6.4 11.8 -2-10-4

To reduce overall dimensions, solid delay lines (LZ) are made in
the form of notched rods (Fig. 11.1.1, b) or multisided plates (Fig.

11.1.1, c), in which the delayed signals undergo multiple reflections.

Quartz transducers are glued to the surface of the rod.

The frequency characteristics of the delay line are determined

mainly by the characteristics of the quartz transducers. The latter
have sharply marked resonance properties at frequencies determined by

* the thickness of the quartz plate and having the order of tens of mega-

hertz. Therefore, ultrasonic delay lines usually delay radio pulses

whose resonance frequency coincides with that of the quartz transducers.

If the video pulses must be delayed by using ultrasonic delay lines,

then these pulses are fed to a balanced modulator BM for modulation of

the oscillation being fed from the carrier frequency generator G (on

j the order of 15-20 MHz) and the radio pulses formed in this manner are

fed to the ultrasonic delay line, where they are delayed by the neces-U sary time and are then amplified (to compensate for attenuation during
passage through the ultrasonic delay line) and are detected by a syn-

chronous detector SD (Fig. 11.1.2).
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(3) Otputtransucer

Sigl i atnion inthUltrasonic delay lineopissavau.7

on the order of 50-70 dB, of which approximately 35-40 dB are losses
in the transducers. If barium titanate ceramics are used instead of a 373

crystalline piezoquartz plate as the transducers, these losses are re-

duced to 10 dE. However, the bandpass is reduced somewhat in this
case (1541.

TO eliminate the dependence of the delay time on the ambient tem-
perature, the delay line is placed in a thermostat, usually a multi-
layered one, which permits the temperature to be held in the range of

+ O.01C with variation of ambient temperature by + 50C [68]. In or- 374

er that the delay of the pulsed signal in the line be sufficiently
accurately equal to the repetition period of the pulsed system T, this
system is started from a synchronizer with the same delay line [154-155].

Both delay lines are placed alongside each other in the same thermostat.
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In this case equality of the delay line and repetition period can be
achieved with accuracy on the order of a thousandth of a percent.

I.Y,3 .
(4)

Fig. 11.1.2. Block diagram of delay device.
Key:/) Balanced modulator; (2) Ultrasonic delay
line; (3) Synchronous detector; (4) High-frequency
generator.

Despite a number of advantages of mercury ultrasonic delay lines
(low level of various reflections, low attenuation and so on), they
have not been used recently due to the inconvenience of operating them
(mercury is toxic, requires periodic purification, is sensitive to

vibrations and so on). Therefore, magnesium and quartz ultrasonic de-

lay lines are most frequently employed. They are comparatively inex-
pensive, simple to manufacture, small in dimensions, tolerate strong
vibrates and impacts well and do not require serious maintenance.

As an example, let us present the parameters of a fused quartz

ultrasonic delay line: delay time is 1 ins, resonance frequency is
15 MHz, bandpass (at level l//-2) is 6 MHz, attenuation is 45 dB, dynam-
ic range (signal level with respect to level of all spurious ref lec-

tions) is 40 dB, the "three-cycle echo" level is 50 dB, weight is 500
grams, volume is 410 am3, operating temperature is -55 to +100 0C and

* the temperature velocity coefficient is 10-4. It has the shape of a
pentadecahedron (Fig. 11.1.1, c) and the signals in it are reflected

30 times from different edges of the plate.

A magnesium ultrasonic delay line, the technique of manufacture of

which is simpler, has somewhat worse parameters (attenuation up to

50-70 dB and so on) and therefore the cost is lower.

Pulses can also be delayed by magnetic recording of them and sub- 375

sequent reading at the necessary moment of time (117, 182] and also by

recording on cathode-ray tubes with charge storage (storage tubes) and
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reading the recorded charge pattern. These problems are outlined in

detail in (182-185] and others.

The signal delay (storage) time in these devices in equal to the

time interval between the moments of writing and reading and can be

made as long as desired. This also includes the main advantage of these

delay devices.

It However, magnetic recording on tape, drum or disk is integrated
with mechanical movement of the magnetic carrier with respect to the
recording and reading heads. The speed of this movement should be main-

tained with very high accuracy, which is difficult in practice. Crea-

tion of electron beam scanning voltages that provide rather precise

recording of signals to the corresonding spot of the cathode-ray tube

screen and subsequent reading of the "tracks" of these signals also

causes great difficulties.

Moreover, specific distortions occur when recording to magnetic

material and to the screen of a cathode-ray tube with charge storage-

extension of the recorded pulse in length [186], clogging (seeding) ad-
jacent sections of the screen by secondary electrons (182, 186, 1871

and so on. In this case the resolution of the pulse systems deterior-

ates and the noise level increases.

These features should also be taken into account when solving the

problem of the feasibility of using magnetic and cathode-ray delay

devices in optimum filters and pulse signal storage devices.

Despite the noted disadvantages, cathode-ray tubes with charge

storage (storage tubes) are used both in pulsed signal storage devices

and especially in moving target selection systems.

Nevertheless, the best qualitative indicators of these systems

provide delay devices in the form of ultrasonic delay lines.

2. Spurious Reflections in Ultrasonic Delay Lines 376
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The greatest difficulties in realization of analog storage devices
are caused by the presende of spurious reflections or false signals,

which are caused by passage of the signal being delayed over paths

different from the main (calculated) path. Therefore, when feeding a

rather short pulse to the input of a real ultrasonic delay line, sev-

eral tens of false pulses with different amplitudes and delays appear

at its output in addition to the pulse delayed by the required time T.

As an example, the results of measurements for one of the real ultra-

sonic quartz delay lines are shown in Table 11.1.2 [1521. The pulse

delayed by 669 Ps is the useful signal, while the remaining pulses are

spurious reflections. The strongest of them is the so-called "tricir-

cular echo," having a delay three times greater than that of the main

*signal and attenuation of 55 dB. It is caused by double reflection
from the output and input transducers of the delay line. All the other

spurious reflections have greater attenuation-from 66 to 80 dB-

and lower delay, beginning at 48 us. The sum of all the spurious sig-

nals is 45 dB less than the signal. The parameters of these spurious

reflections usually have an irregular nature [152, 188]. Therefore,

it is feasible to estimate these parameters statistically. The mean-

square value of the amplitude of spurious reflections of this ultra-

sonic delay line comprises -53 dB compared to the main signal.

Table 11.1.2

Delay 48141 143 176237331376425473 525 57 57 61
Tim,[2
us

Attenu- 80 80 72 74 80 75 78 66 78 78 76 74
ation,

669 673 676 763765 859860954 -- -2007

us

Atteju- 0  7 1 74 74 17 74 71 61 611 72 77 78 55
aticn, __ __

Due to their random nature, spurious reflections, being added to 37

internal and external noise, make it difficult to separate the signal.

However, their harmful effect is not limited to this. It is shown be-

low how spurious reflections limit the upper bound of the stable feed-

back coefficient of a storage device (recirculator), thus reducing its

efficiency, and sharply reducing its dynamic range.
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Therefore, a reduction of the level and-number of spurious ref lec-
tions 11s one of the main problemns solved in design of ultrasonic delay
lines.

.To reduce the amplitude of spurious reflections, corrugation of
the side walls of the acoustic line and painting of the walls are em-

* ployed to create an absorbing layer. To eliminate spurious reflections
by eliminating the corresponding side paths of ultrasonic wave propa-
gation, special notches or kerfs are made in the acoustic line (Fig.
11.1.1, b). The spurious signals, which are the sum of several signals
reflected twice from different pairs of opposite surfaces, can be at-
tenuated by partial compensation of their components, achieved by al-
ternate shifting of the reflecting surfaces by a value equal to one-
fourth the wavelength. Spurious reflections with multiple delays are
attenuated by special cylindrical holes drilled in the acoustic line
perpendicular to the direction of wave propagation and having a diameter
on the crder of several wavelengths. These methods are outlined in
detail in (188]. Other useful recommendations to reduce spurious re-
flections are presented in survey (68].

11.2. Elimination of Self-Excitation of Analog Storage Device

1. Stability of Storage Device With Regard to Spurious Reflections

The spurious reflections in the ultrasonic delay line of a storage
device can cause self-excitation of it. Therefore, let us consider

the condition of stability of a storage device with the presence of aux-
iliary channels that cause spurious reflections in the ultrasonic delay 378

line. This storage device (Fig. 11.2.1) is essentially a feedback

amplifier and its stability can be judged by using the Niquist criter-

ion (28]: if the end of the vector of the complex feedback coefficient

R(w) of the amplifier (storage device), describing a closed curve on a

complex plane, does not encompass the point (+1, 0) upon variation of

frequency w from 0 to -, then this device is stable.

Let us first consider the case of multiple spurious reflections inI which Tk -kT, where k is an integer. The complex feedback coefficient
is then
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where ak is the additional attenuation coefficient of the k-th spurious

reflection. Since usually the first vector that describes the

feedback coefficient of the main channel plays the main role in (11.2.1).

It describes a circle of radius m upon variation of frequency. This

vector is directed horizontally toward point (1, 0) at frequencies

=i r~ -that are a multiple of repetition rate. All the vectors that

characterize the feedback coefficients of the auxiliary channels on these 37

frequencies will have the same direction (Fig. 11.2.2, a). Therefore,

the total feedback coefficient is equal to the arithmetic sum of the

feedback coefficients of individual channels:

while the end of the total vector will lie to the left of point (1, 0)

only provided that

n~l~iI &.< 1.(11.2.2)

This is a necessary and sufficient condition of storage device stability

in the case of multiple spurious reflections.

Let us show that this condition is also valid in the case of non-

multiple spurious reflections, when
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K(0)=m eT r  , (11.2.3)
\ k=i

where Tk is a nonmultiple of T and usually 0 < T < 3T.

.4)

Fig. 11.2.2. Vector diagrams for feedback coefficients
of storage devices.

And the first vect r plays the main role in this vector sum in the 3E

given case. It is directed horizontally at frequencies la that are a

multiple of the repetition rate. In this case the vector of the feed-

back coefficient of the k-th auxiliary channel will be directed at an

angle IQTk. Since the bandpass of the storage device is approximately

1,000 times greater than the repetition rate, then 1 can assume any

whole value up to 1,000. Since Tk essentially lies in the range 0.3T,

then the angle of rotation of the k-th vector can assume any value in

practice in the range (0.27r).

Obviously, the end of the sum of two vectors having length m and

ma1 and arbitrary phases always lies within a circle with radius m(l +

+ al); the end of the sum of three vectors m, mal and mQ 2 long and with

arbitrary phases lies within a circle of radius m(l + al + 02) and so

on (Fig. 11.2.2, b). Therefore, the end of the total vector (11.2.3)

always lies within a circle of radius a I +j.

This circle will not encompass the point (1, 0) only if its radius

is less than 1, i.e., if condition (11.2.2) is fulfilled.
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Accordingly, it is necessary and sufficient that the feedback

circuit of the main channel satisfy the following condition for stability

h<I I (11.2.4)

Thus, the presence of spurious reflections limits the upper value

of the feedback coefficient of the storage device and thus the gain pro-

vided by the storage device during storage of a sufficiently large num-

ber of pulsed signals. Actually, it follows from (11.2.4) that the max-

imum stable feedback coefficient (through the main channel) is
[-'

m! Ma X --

k=1

and at 31

M..

where e is a sufficiently small positive value selected from the condi-

tion of maintaining stability with instability of the storage device

parameters (for example, e = 0.01).

Then according to (5.4.7) with sufficiently large number of stored

pulses when m.. <4, the maximum possible gain of a coherent storage

device is

B.. - 1+I , =_ 2(1--) + I. (11.2.5)

Specifically, if the levels of all spurious reflections are identical,

i.e., Ok - a for k - 0-n, then

Having assumed, for example, that e - 0.01, we find BmaKC equal to 8.93,

20.8 and 100, respectively, at a - 0.01 and n - 24, a - 0.01 and n - 9

and a - 0.001 and n -0.
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Thus, spurious reflections sharply reduce the efficiency (gain) of

the storage device. This reduction is greater, the greater the number

and the higher the relative level.

Therefore, to ensure high efficiency of an analog storage device,

it can be made on the basis of an ultrasonic delay line in which the

minimum values are the number and especially the level of spurious re-

flections. Unfortunately, the ultrasonic delay lines manufactured at
present have comparatively high level of spurious reflections that reach

values on th: order of 0.03-0.1 in soecss nti regard th 38:b

lem of designing efficient analog storage devices based on ultrasonic
4delay lnswith cmatieylarge sprosreflections is very m38

portant. Thsproblem issimilar to a knw ereto that ofdeing

a highly reliable system of insufficiently reliable components. Some

methods of solving the indicated problem are considered below in section

11.5.

2. Eliminating Self-Excitation of Storage Device Due to Instability of
Its Components

The instability of the transfer coefficients of the storage device

components can disrupt its normal operation and lead to self-excitation.

Even a slight increase of the amplification factor of one of the ampli-

fiers that compensate for signal attenuation in an ultrasonic delay

line can disrupt the condition of stability 111.2.4) and cause self-

excitation. A decrease of the transfer coefficient of one of the com-

ponents of the storage device may lead to a sharp decrease of gain, i.e.,
to a reduction of its efficiency. Thus, for example, if this decreases

causes variation of m from 0.95 to 0.9, i.e., by only 5.8 percent, the
maximum gain decreases from 39 to 19, i.e., more than one-half.$

To eliminate the possibility of both self-excitation and a decrease

of the efficiency of the storage device, automatic regulation of its

feedback coefficient is employed. one of the possible block diagrams

of a storage device with this regulation is shown in Fig. 11.2.3 (139,

189]. its operation is based on comparison of amplitude V1 of the un-

stored auxiliary video pulse to the amplitude of the stored pulse V2
attenuated (1 - mo) times, where mo is the calculated value of the
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feedback coefficient of the storage device. These amplitudes are iden-

tical during normal operation. Deviation of m from the calculated value

changes the value of the stored signal, due to which the equality of

amplitudes is disrupted. In this case a voltage which is integrated and

used to control the value of the coefficient of the intermediate-frequency

amplifier is generated at the output of the subtraction device. The time

constant of this regulation is on the order of l0T.

38

'81

(8)

Fig. 11.2.3. Block diagram of storage device with auto-
matic regulation of feedback coefficient.I Key: (1) Auxiliary video pulse generator; (2) Time se-
-lector; (3) Input; (4) Balanced modulator; (5) Delay
line; (6) Intermediate-frequency amplifier; (7) Detector;
(8) Output; (9) High-frequency generator.

The control circuit operates in a specially allocated time channel 382

frequency of the effect of useful signals and is connected to the main

circuit by two time selectors (VS) which are controlled by the auxiliary 383

* video pulse generator (GVI) started from the synchronizer. If a special

time channel cannot be allocated to regulate the feedback coefficient of

the storage device, then a special frequency channel is allocated for

this purpose.

* 11.3. Effect of Multiple Spurious Reflections on Efficiency of Storage
Device

Let us ascertain that multiple spurious reflections (i.e., those

with delays Tk - kT, where k is an integer) contribute to signal storage

through the main channel by increasing the equivalent feedback coeffi-

* cient, the value of the stored signal and thus the gain provided by the

storage device.



This is obvious for synchronous spurious reflection, which has de-

lay T. In this case the combination of the main and auxiliary channels

with identical delays and feedback coefficients and m and ma (Fig.

11.2.1) is equivalent to a single channel with the same delay and coeffi-

cient mg = m (1 + ai). The gain in the signal/noise ratio provided by the

storage device increases if a sufficiently large number of pulsed signals
is stored due to an increase of the equivalent feedback coefficient (if
of course its value is less than l and there is no self-excitation). 38z

Since the strongest spurious reflection is a tricircular echo, let

us consider storage of the signal in a storage device containing one

auxiliary channel with delay Tk = 3T and attenuation a in addition to

the main channel (Fig. 11.2.1). Let a sequence of N pulsed signals act

on the input of the storage device, beginning at moment t = 0, and hav-

ing repetition quasi-period T and pulse amplitude V1 (Fig. 5.3.1; a).

Let us assume that the useful signals are added to the multiple spurious

reflections in phase, i.e., the useful signals and spurious reflections

are coherent. It is easy to show by the induction method that the volt-

age at the output at moment t =nT, where n < N - 1, comprises

u, (nT)= V , V (May)1 C, m - ,

where Ckis the number of combinations of k components with respect to 1.

This expression can be converted to the following form:

c, (T)Z (nJ3) Uh-1
Ona

if n is sufficiently large, the first term is considerably greater than

the -um of the remaining terms and

u(nnT In 0i ml+0)k.

Accordingly, the signal is stored in the considered storage device

by approximately the same law as in a storage device in which there is

only one main channel with feedback coefficient ma - m (1 + ai).
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Thus, multiple spurious reflections do not create false signals 385
and contribute to storage of the useful signal. Therefore, their level
can be permitted considerably higher than that of nonmultiple spurious
reflections, which worsen the operation of the storage device by reduc-
in- its dynamic range (see section 11.4 below). However, the level of

multiple spurious reflections should be taken into account when solving
the problem of the value of the stable feedback coefficient through the

main channel.

Due to the fact that auxiliary channels usually have irregular

nature, due to which the coherence of useful signals and spurious ref lec-
tions may be disrupted, a small total level of multiple spurious ref lec-

tions is also desirable.

11.4. Effect of Nonmultiple Spurious Reflections on Dynamic Range of
Storage Device

The dynamic range of a storage device is characterized by the ratio

of the useful signal amplitude at its output to the amplitude of the

greatest spurious reflection (expressed in decibels) (or to the total

amplitude of all spurious reflections or to the mean square value of

the amplitude of spurious reflections).

The dynamic range of the storage device is considerably below that

of the ultrasonic delay line used in it. This is explained by the fact

that the useful signals are stored in the storage device a considerably

lesser number of times than the spurious reflections [152, 1901.

To ascertain the validity of this conclusion, strange at first

glance, let us consider a simplified circuit of a real storage device

with main and one auxiliary channel with delays by T and Tk (where Tk is
not a multiple of T) and with attenuation m and ma (Fig. 11.2.1). As

usual, a <<1.

Let a sequence of N pulsed signals with amplitude V1 and repetition

quasi-period T be stored (Fig. 5.3.1, a). Then according to (5.4.1),

the signal output voltage is
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(kT)=V, -  at O<k<N-1. (I1.4.1)

The spurious reflections are stored by a more' -implicated law. Let 38

us take into account only those spurious reflections which were formed as
a result of single passage through the auxiliary channel. The spurious

reflections that passed two or more times through the auxiliary channel

have considerably lower amplitude and they can be disregarded in the

first approximation.

L m nn n

m• 'J, zf ~ 11 .. T~ ZTZT*VU 37T.7,,t

Fig. 11.4.1i. Time diagrams of voltages in storage device.

The first impulse of the input channel (Fig. 11.4.1), passing

through the adder, auxiliary channel and again through the adder, causes

a spurious reflection V4 (Tk) = maVl at the output. A signal V4 (T) =

- Vi(1 + in), which causes a spurious reflection V3 (T + Tk) = mc.Vl(l + m)

at the output of the auxiliary channel and which is stored through the

main channel, is fed to the auxiliary channel during the second repeti-I tion period. The spurious reflection coincides in time with the pulse
at the output of the main channel caused by spurious reflection V4 (Tk) =

= maY1 being fed to its input and having amplitude V,(Ta+T'-mV4(Th)- 'v,. 38"

Obviously, V,(T+ T1).,V,(T+ Ta) +V,(T 1+T)-nV, (I+Qm). I n like fashion,

VS(2T+ T ) ,-flocV, (1 .2m+3m'), and generally
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V, (nT +Tr) mV, (1 -.2M + + -), =

at O<n< V-

The peak value of the stored spurious reflections comprises

[ T -_ Nr4 ] (11.4.2)

(I-i)' I-rn]

Accordingly, the ratio of the peak values of the useful signal and

spurious reflections at the output of the storage device comprises

Ve I-n _ ___ (11.4.3)

I - -P (, -m)_ ("

Specifically, with a sufficiently large number of pulses when condition

(5.4.19) is fulfilled,

I -n (11.4.4)

Thus, the dynamic range of the storage device in decibels is

D.=:2ohIgia 8 -2Og. (11.4.5)

where Dn = 20 ig1 is the dynamic range of the ultrasonic delay line,

while a decrease of the dynamic range due to storage of spurious reflec-

tions is

h~D.TJ.2l 1.J!. (11.4.6)

This value comprises 12, 15, 19.1 and 25.6 dB, respectively, at m = 0.8,

0.85, 0.9 and 0.95.

Accordingly, the dynamic range of the storage device deteriorates

more strongly, the greater its feedback coefficient, i.e., the higher

its efficiency.

Thus, for example, if the dynamic range of the ultrasonic delay 388

line is 55 dB, then the dynamic range of a storage device with m - 0.9

and 0.95 comprises 35.9 and 29.4 dB, respectively.
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Some methods of reducing the harmful effect of spurious reflections

are considered below.

11.5. Methods of Reducing Effect of Spurious Reflections

1. Periodic Variation of Signal Polarity During Different Repetition
Periods

To reduce the effect of spurious reflections on the operation of a

storage device, one can use periodic variation of signal polarity at the

input and in the feedback circuit by means of balanced amplifiers BU

(Fig. 11.5.1, a). Signal polarity at different repetition periods can

be varied by different laws.

Specifically, double variation of polarity during three repetition

periods yields good results (Fig. 11.5.1, b). In this case there is

partial compensation for spurious reflections whose delay time differs

considerably from that of the useful signal. Thus, when pulsed signals

that delay the repetition period by time t1 with respect to the begin-

ning are stored, all spurious reflections whose delay time is not with-

in the range (T - tl, 2T - tl) are partially compensated.

As an example, let us take tI = 0.5T and the delay time of the

spurious reflection as Tk = 1.75 T. Two spurious reflections then coin-

cide in time during the fourth repetition period at moment t = 3.25T.

One of them is caused by the useful signal that has arrived during the

first period and that has initially passed through the auxiliary channel

and then the main channel of the delay line, while the second is deter-

mined by passage of the useful signal through the auxiliary channel dur-

ing the first two periods. The amplitudes of these reflections are

equal to Vlmam and Vl(l + m)ma, respectively, while the polarities are

opposite, due to which their sum has amplitude Vlma. If there is varia-

tion of polarity, the spurious reflections have identical polarity and

are added arithmetically, due to which the amplitude of their sum is

Vlm a(l + 2m), i.e., (1 + 2m) times greater.

It is recommended in (1891 that variation of polarity (phase manip- 389

ulation) be used by the law shown in Fig. 11.5.1, c to attenuate the

tricircular echo.
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Fig. 11.5.1. Block diagram of storage device with variation of
signal polarity and time diagrams of voltages in it.

Let us note that the methods described above for suppression and
attenuation of part of the spurious reflections are based on time selec-
tion and therefore are effective only if the delay time of the spurious
reflections differs considerably (by an average of the repetition half-
period) from the delay time of the useful signal.

2. Use of Frequency-Modulated Storage Device

Spurious reflections in a storage device with amplitude modulation,
which worsens the dynamic range of the storage device, are stored to a
considerably less degree if amplitude modulation is replaced by fre- 390
quency modulation. The blocks diagrams of two frequency-modulated stor-
age devices are shown in Fig. 11.5.2, a and b.

The feedback circuit in the first storage device consists of a
reactance tube, FM generator (ChMG), limiting amplifier (UO), delay
line and FM discriminator (ChD). The advantages of this storage device
are the capability of achieving feedback coefficients as close to one as
desired and considerably lower instability of the amplification factors
of the intermediate-frequency amplifier and other amplitude pari-eters
and also instability of the feed voltages.
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1 U.(2) (3)

(5)

Me {,
Fig. 11.5.2. Block diagram of frequency-modulated storage
device.
Key: (1) Reactance tube; (2) FM generator; (3) Delay line;
(4) FM discriminator; (5) Limiting amplifier; (6) Mixer;
(7) Intermediate-frequency analyzer; (8) Frequency generator.

The pulses stored in this storage device are added on the video
frequency. Therefore, its operation essentially does not differ from
that of an AM storage device. The only difference is that the informa-
tion on the arrival of a pulse to the input of the storage device and
on its value is recorded in its frequency rather than in the amplitude
of the oscillation delayed by the line.

There is direct addition of the frequency deviations caused by the
pulsed signals to be stored in the second storage device (Fig. 11.5.2,
b). Actually, if the first pulse is fed to the input of the storage
device, the frequency of the FM generator varies from fl to fl + AF, 391
immediately changing the frequency of the output oscillation of the
mixer Smi from f2 = f3 - fl to f2 - AF and after delay by T in the delay

line, it changes the frequency of the output oscillation of mixer SM2
from f3 = fl + f2 to f3 - AF. After the pulse at the input ends, the

requency of the FM heterodyne returns to a value of fl. During the

second period the pulsed signal, which delays with respect to the first
by T, again changes the frequency of the FM generator by fl + A~F. In
time it coincides with the frequency pulse f3 - AF being fed to the

second input of the first mixer. As a result a frequency pulse f3 - 20F
and so on is formed at its output. Accordingly, the frequency deviations

caused by the pulsed signals with weight equal to 1 are stored, i.e.,
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the feedback coefficient of this (internal) storage device is equal to

1. Negative feedback with low coefficient s - 1 - mo is introduced be-

tween the output and input of the storage device to reduce the weight

coefficient of storage to the desired value mo.

Thus, the considered FM storage device stores pulsed signals with

optimum weight coefficient ino.

An important advantage of this layout of the storage device is the
capability of reducing the effect of spurious reflections to the dynamic

band of the storage device. This is explained in the following manner.

When the carrier frequency of the oscillations delayed in the delay

line is constant, the spurious reflections that have passed through the

jmain channel of the delay line will be in phase with the useful signals
that have passed through the auxiliary channel and that have achieved

the nature of spurious reflections due to this. Being in phase, they

are added arithmetically as in an AM storage device, considerably reduc-

ing the dynamic range of the storage device.

However, the carrier frequency fluctuates due to natural fluctua-

tions (for example, caused by hum in the reactance tube). This leads to

addition of the spurious reflections in random phases, i.e., by power

rather than by amplitude. Therefore, unlike an AM storage device and

unlike the case when cophasal (coherent) addition of spurious reflections

occurs in an FM storage device with noncoherent addition of them in an

FM storage device, as Urkowitz pointed out (1521, the dynamic range of

the storage device is 39

D. =Dalo-gj10 ',1.2. (11.5.1)

It follows from (11.4.5) and (11.5.1) that the dynamic range is

deteriorated less by the following value in an FM storage device due to

noncoherent addition of spurious reflections than in an AM storage device

&D3 =10 igL±.m -2. (11.5.2)
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This value comprises 7.5, 9, 10.8, 13.9 and 18 dB, respectively,

at m = 0.8, 0.85, 0.9, 0.95 and 0.98.

A specially run experiment showed [152] that the dynamic range of

an FM storage device based on a delay line with dynamic range Dp = 54 dB

and having m = 0.98, is equal to 21.5 dB with cophasal addition of spur-

ious reflections and 38 dB with noncoherent addition of them, caused by

the hum of the reactance tube. Thus, both the capability of a signif-

icant reduction of the effect of spurious reflections on deterioration

of the dynamic range of an FM storage device and relations (11.4.5) and
(11.5.1) that characterize this effect were confirmed experimentally.

Increased attention is now being devoted to development of this FM

storage device due to its advantages.

3. Use of Phase-Modulated Storage Device

Information on pulsed signals and the accompanying noise being fed

to the input of a storage device can be written not only in the form of

the amplitude of radio pulses delayed in the delay lines or the frequency

of the oscillation circulating through the feedback loop of the storage

device, but in its phase as well. A phase-modulated generator (FMG),

which changes the phase of the output oscillation by a value propor-

tional to the instantaneous value of the input pulse voltage, is used

for this purpose in the storage device (Fig. 11.5.3). Since the oscil-

lation amplitude carries no information whatever about the input voltage,

the oscillation can be subjected to amplitude restriction that eliminates 39

the effect of instability of amplitude characteristi.s. Therefore, very

low requirements are placed on the stability of these characteristics.

(1) * A3() A(4)

Fig. 11.5.3. Block diagram of phase-modulated storage device.

Key: (1) Input; (2) Phase-modulated generator; (3) Delay line;
(4) Phase detector; (5) Limiting amplifier; (6) Output.
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Phase shifts of the circulating oscillation caused by pulses lo-

cated at different repetition periods with time shift by a value that

is a multiple of T are added in a phase modulator. The latter is a

phase-shift adder because of this.

Output voltage is taken from the load of the phase detector (FD)

controlled by a special reference generator. As in the case of a fre-

quency modulated storage device, negative feedback with coefficient

1 - ma is introduced between the output and input of the storage device
so that signals are stored with the desired weight coefficient m0.

A superregenerator can be used as the amplifier. Very simple in

circuitry and having only one stage, it permits total compensation of
signal attenuation in the delay line and automatic limitation of oscil-

lation amplitude. In the storage device described in [192], delay lines

by time 100 us and a superregenerator are used that operate at a fre-
quency of 40 MHz and have amplification of 60 dB. The stored pulses

have length of 0.67 us. It is stated that the storage device permits

storage of up to 2,000 pulses. This value was calculated as the product

of the storage time (integration) by the repetition rate. The storage

time was determined by the width of the bandpass of the spike of the

frequency characteristic of the storage device rather than directly.
We feel that the number of stored pulses indicated above is very exag-

gerated. Nevertheless, a phase-modulated storage device apparently per-

mits one to store a considerably greater number of pulses than an AM

storage device.

Urkowitz's investigations [193] showed that spurious reflections in 394

a phase-modulated storage device can be stored both coherently (cophasal-

ly) and noncoherently (due to irregular variations of the carrier fre-

quency). As in the case of a frequency-modulated storage device, the

dynamic range of a phase-modulated storage device will be appreciably

higher with noncoherent addition of spurious reflections than with coher-

ent addition of them.

Since realization of analog storage devices is related to many tech-

nical difficulties, digital storage devices of pulsed signals, which have

a number of advantages, are of great practical interest. They are also

considered briefly in the next chapter.
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*i CHAPTER XII
395

DIGITAL STORAGE DEVICES

12.1. CHARACTERISTIC FEATURES OF DIGITAL STORAGE DEVICES

Digital storage devices of pulsed signals are devices based on dig-

ital computer equipment components and designed to separate repeated

pulsed signals from the mixture with noise and other interference.

Since the digital equipment components operate with digital numbers,

the received oscillations, which are analog, are converted to digital
form prior to digital storage by means of special analog-digital conver-

ters (quantifiers). This quantification of the received oscillations is

carried out both by level (amplitude) and in time.

In the simplest case of binary amplitude quantification,* one can

use a threshold device as the converter (Fig. 1.2.2.). A voltage of some

constant value, to which the value "1" is assigned, is generated at the

output of this device when the received oscillation exceeds the threshold

voltage. Otherwise, the output voltage is zero and the value "0" is

assigned to it.

Quantification of received oscillations for a large number of levels
is not feasible since it permits one to reduce the threshold signal by
only 1-2 dB and requires considerable complication of the storage deviceI (2021.

356



Since the received oscillation varies in time, it must also be

quantified in time with a period selected from the condition of maintain-

ing the basic information in the received oscillation to convert it to a
number seauence. This converter can be a time selector (coincident cir- 39

cuit), to one input of which the received oscillation quantified in the

threshold device is fed and to the other input of which control pulses

w~ith quantification period are fed.

Each of these pulses delays the system with respect to the begin-

ning of the repetition period for a quite specific time. Therefore, the

number generated by it corresponds to the previously known segment of

range. Each repetition period of the system corresponds to some azimuth

("azimuth position"), in the direction of which the sounding pulses are

emitted and from which the reflected signals come, with circular or sec-

tor scanning of space. The combination of segments of the same range at

different azimuth positions comprises the so-called range circle in which

digital storage of pulsed signals also occurs.

Unlike analog components, digital components are not invariant with

respect to the delay time (see section 1.6) and therefore they do not

have the natural multichannel nature in range. Because of this, digital
storage devices that process signals coming from different distances

must be made multichannel in range, which causes a sharp increase of

their equ~ipment. A large number of comparatively simple standard compon-

ents of digital technology in circuitry and design, usually produced

serially and therefore having low cost and high reliability, is used in

digital storage devices.

Being more complex, digital storage devices require higher organiza-
tion of their operation and accordingly of the entire information proces-

sing system. Having higher and more complex organization, digital stor-

age devices are characterized by greater flexibility, which permits

different operating complications of the radar system to be used-pro-

grammed scanning, sequential methods of analysis, pseudo-random modula-

tion of the repetition period and so on-and also permit one to make it

adaptive (self-tuned), which can permit a considerable increase of its

capability with comparatively low complication of this system and improve- 3S

ment of its characteristics when operating in a complex and variable

situaation.
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Digital storage devices are easily integrated with an automated

information processing system. Their main advantage is that, working

with numbers rather than physical values, '-hey permit one to store an

infinitely large number of pulsed signals Qnd thus to separate very weak

signals from their mixture with powerful noise and interference. A

convincing example of the high efficiency of these storage devices is

their use in planetary radar systems in the solar system, which made it
possible to detect random signals on a noisy background with ratio of

signal-noise output on the order of 100 (2011. However, digital storage

devices can also be used successfully in ordinary target radar systems-

* aircraft, missiles, ships and so on.

12.2. Principle of Digital Storage

If a noise oscillation is being received, then a random flow of ones

and zeros is formed as a result of its amplitude-time quantification. If

a mixture of repeating pulsed signals and noise is being received, then

the flow of quantified pulses becomes ever more random with an increase

of the signal/noise ratio due to its greater regularity, which increases

as the signal/noise ratio increases. Digital storage devices also deter-

mine by digital equipment methods the regularity (periodicity) of a

pulsed flow formed as a result of quantification of a mixture of repeat-

ing pulsed signals and noise.

Let us consider the operation of a digital storage device in more

detail. Let there be formed a sample ul, U2. u3, ... F un as a result of

quantification of the received oscillation in a fixed range circle during

* n adjacent repetition periods (i..e., at n adjacent azimuth positions).

* To solve the signal detection problem, it is required that the question

of whether this sample was generated only by noise or a signal-noise

mixture must be answered. Let us denote by pw the probability of the 39

event ui - 1, observed when noise exceeds the quantification threshold

in the i-th position in the range circle and let us denote by gw the

probability of an opposite event ui - 0 (i.e., gw = 1 - pw). Let us de-

note similar probabilities by pc and gc when receiving a signal-noise

mixture. Let us note that when storage occurs after a linear amplitude

detector, then p.~ and pc are calculated by formulas (6.3.3) and (6.3.4)

if F and D in them is replaced by puw and pc, respectively, and U0 is

assumed to be the quantification threshold.
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Two hypotheses can be advanced with respect to the nature of the

sample ul, u2 , ... , un: H0 is a sample generated by noise and Hl is a

sample generated by a signal-noise mixture. The optimum procedure for

making the decision (see section 1.2) is calculation of the similarity

ratio A(ul, u2, ... , un ) and comparison of it to threshold AO, whose

value is determined by the given probability of a false alarm when us-

ing the Neymann-Pearson criterion.

In the considered case

P.- (12.2.1)

where Pc and P, are the probabilities that the sample is generated by a

signal-noise mixture or by noise alone, respectively.

Because of the independence of events ui (i = 1-n), the probability

that a given noise sample contains k ones, which occupy quite specific

positions, comprises -P.gh•

In similar fashion, when receiving a mixture of a square-wave se-

quence of pulsed signals and noise, Pc Cqck, since the probability

of Pc is identical for all azimuth positions. Therefore, the similarity

ratio is

A(u.. u...., a. -- (PO 0' "- )(- PON- . (12.2.2)

Hypothesis Hl is used if

By taking the logarithm of this expression and solving it with re- 39,

spect to k, we find

kk , (12.2.3)

Accordingly, the optimum rule of signal detection by the sample of

its n discrete values includes comparison of the number of ones in this
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sample to the threshold number ko. If k > ko, then the decision is
made to receive the signal, otherwise it is absence.

As in the analog case, errors-false alarm and signal omission-are

possible in this case. The probability of a false alarm and correct de-

tection comprise, respectively

F=~cph~lp.)uh, 1(12.24)

* Analysis of the more complex case of receiving a sequence of pulsed
signals with nonsquare-wave envelope leads to a similar result. In this

case the wei.ght sum of of sampled di.gital values TA,' in which the
weight coefficients Yj are determined by the envelope of the sequence of

pulsed signals at the input of the threshold device, is compared to the
threshold [202, 203]. The use of optimum weight summation instead of
weightless summation (yi = 1) permits one to reduce the threshold signal/
noise ratios by only a value on the order of a decibel [202] and there-

fore it is usually unfeasible since it is related to complication of the

digital storage device.

The detection algorithm considered above also remains valid in the

case when the azimuth position of a sequence of pulsed signals is pre-
viously unknown. Similar to detection of a signal with unknown arrival 40
time, the similarity ratio is calculated in this case for each azimuth
position by n current sample values, which is equivalent to calculating
the number of ones, which is compared to ko. This procedure is called

the "sliding widw or "sliding cursor" algorithm (Fig. 12.2.1) [204].

This algorithm can be realized in a single range circle by using an
amplitude quantifier and reversible counter. The indication of the lat-
ter upon conversion to the next azimuth position is increased by the
number standing at this position and is decreased by the number which
goes beyond the range of the "sliding window." Because of this, the
counter indicates the number of ones in the range of the "sliding window."
If this number exceeds the threshold value ko, then the decision is made
about detection of the signal.
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Fig. 12.2.1. Process of analyzing quantified voltage of received
oscillation by "sliding window" algorithm at n = 5 and k0 = 3:
a-variation of quantified signals with number of azimuth position;
b-variation of quantified signals for signal-noise mixture; c-
dependence of number of ones in "window" on number of azimuth
position.
Key: (1) Beginning of detection.

To receive minimum threshold signals, the threshold value k0 should

be selected as optimum [202, 205]:

k.o,. I. (12.2.5)

The existence of an optimum value k0 can be explained in the follow-
ing manner. It is obvious from (12.2.4) that both the probability of a
false alarm and the probability of correct detection decreases with an
increase of k0 with fixed values of probabilities pw and Pc. To keep 401
the probability of correct detection fixed, one must increase the proba-
bility Pc by increasing the threshold signal/noise ratio. On the other
hand, to maintain the former value of the probability of a false alarm
with an increase of k0 , one should increase the probability PW by reduc-

ing the level of the quantification threshold. In order that the latter
not lead to an increase of probability Pc but accordingly lead to the
probability of correct detection, one can reduce the threshold signal/

noise ratio.

Thus, in the case of fixed probabilities of a false alarm and cor-
rect detection, an increase of k0 leads on the one hand to a decrease of
the threshold signal/noise ratio and on the other hand to an increase of
this ratio. The first tendency predominates at the beginning of an in-
crease of k0 , due to which the threshold signal/noise ratio decreases,
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while the second tendency that causes an increase of this ratio then

begins to predominate.

f20-- --

'5 __

2 3 5 8 aet 20 30 40 5A

Fig. 12.2.2. Dependence of threshold signal/noise ratios on
number of stored pulses with optimum noncoherent digital (a)
and analog (b) storage.

This also explains the presence of an optimum value of k0 and also 40
the weak effect of slight deviations of k0 from the optimum value by the

threshold signal [205].

The optimum value of the threshold voltage of an amplitude quanti-

fier during reception of weak signals is selected so that p. : 0.2 [205].

However, the threshold signal/noise ratio is weakly critical to the value

of p.. Therefore, p 1 0.1 is frequently selected in practice. This

permits a sharp reduction of the number of noise blips and thus a de-
crease of the storage capacity of the storage device (see section 12.5).

If the parameters of a digital storage device are selected as opti-

mum, the gain in the threshold signal compared to an ideal noncoherent

storage device is approximately 2 dB (Fig. 12.2.2) [202, 2051.

12.3. Realization of Digital Storage Device

Let us consider one of the possible versions of realizing a digital

storage device using shift registers (Fig. 12.3.1). The number of cells

of each register is selected equal to the number of range circles, for
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which the repetition period of the system T is quantified. The number of

registers n - 1 is determined by the width of the sliding window. The

width of the range circle is usually selected the same as the resolution

of the range system. In the case of using optimum filtration and a 403

noncoherent detector, the range system is determined by the autocorrela-

tion function of the signal envelope, which coincides with that of the

noise at the detector output. Because of the foregoing, the length A of

* the time segment corresponding to the range circle is usually selected

as equal to the correlation time Tk of the noise voltage at the detector

output.

A4 0005 ac

Fig. 12.3.1. Block diagram of digital storage device using shift
registers.
Key: (1) Amplitude detector; (2) Threshold device; (3) Time se-
lector; (4) Timing pulse generator; (5) Logic circuit; (6) To
coordinate tap.

The register contents are shifted by timing pulses that follow the

repetition period A. If the voltage at the input of the amplitude quan-

tifier exceeds the threshold voltage in the i-th range segment, a one is

written in the first cell of the upper shift register, which is then

pushed to the right by timing pulses through the flip-flops of the shift

register and is in the (M - i + l)-th cell of this register by the be-

ginning of the next repetition period. This unit is fed through the

repetition period after being fed to the input of the indicated register

from the last flip-flop of the register to the inputs of the second req-

ister and the logic circuit and is fed through two repetition periods to

the inputs of the third register and logic circuit and so on.

When receiving a sequence of signals following the repetition period

T of the system, ones will be fed simultaneously to the inputs of the

logic circuit with time selector vs and from the outputs of different
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registers, which may cause this circuit to be triggered, indicating a

decision being made about detection of a signal.

t It is easy to see that the considered system is a digital version of

a delay line by time (n - 1)T with (n - 2) uniformly arranged leads in an

optimum filter for the envelope of a sequence of n pulsed signals (Fig.

5.1.1, b) which is an ideal analog storage device.f A logic circuit that realizes a detection algorithm counts the
* number of ones in n range circles to be analyzed and makes a decision on

detection of a signal when this number is greater than the established

threshold ko. The range coordinate can be counted in this case from the

range counter, while the azimuth coordinate can be counted from the

azimuth counter.

In practice it is very difficult to make these digital delay lines 404

in the form of shift registers with a large number of cells (on the or-

der of 1,000). Therefore, instead of these registers, a matrix storage

device with number of cells Mv = T/A and number of digits n is used,

which is usually employed in digital computers and which is made on fer-

rite cores.

For precise realization of algorithm (12.2.3) for optimum detection

of a sequence of pulsed signals, it is necessary that the width of the
"window" be equal to the number of pulses in the sequence: n = N. In

this case (N - 1)M = (N - 1) (T/iA) flip-flops or some other storage cells

should be used in the storage device (Fig. 12.3.1). Since M = T/A is on

the order of 1,000 and since the number of N pulsed signals in the se-

quence may be sufficiently large, practical realization of this storage

device is difficult. To simplify its realization, additional versions

of realizing the detection algorithm are employed. The so-called "k/n -

- 1" criterion is most frequently used as this algorithm [203, 206], with

use of which no more than n adjacent azimuth positions are analyzed

simultaneously, where n <N.

The rule for making a decision on this criterion includes fulf ill-Ument of two special criteria:
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a) the criterion of the beginning of detection ek, which is as-

sumed to be fulfilled in the i H-th position if k ones in n adjacent

positions with numbers from iH - n + 1 to iu are first recorded;

b) the criterion of the end of detection el, which is assumed fu

filled in position ik if a series of 1 zeros following one after the

other is first formed on 1 adjacent positions with numbers from iK - 1

+ 1 to iK after fulfillment of criterion Ck (Fig. 12.3.2).

The values of target azimuth UH and at are determined by the azi-

muth positions iH and iR at the moment of the beginning and end of det

tion, which permits one to calculate the target azimuth:

+ (k -I + t) A. (12.3.

where Aa is the angle between adjacent azimuth positions.

The presence of a subtrahend in formula (12.3.1) is explained by

the fact that the decision on the beginning and end of detection of a

strong signal is made with an error equal to (k - I)Aa and lAa,

respectively.

To simplify the circuitry realization, only logic criteria of tyr

"k/n - 1" at k < n < 5 are used in practice. The criterion of the end

of detection is usually selected from the condition 1 > n - k + 1 [20E

r, - -07

AA

Fig. 12.3.2. Processing quantified noise voltage by "3/4 - 2"
criterion in single range circle.

The 'k/n - 1" criterion is called a whole criterion at n = k and

,ractional criterion at n < k. A whole criterion is most simply reali

e -o.ncidence circuit at k inputs.

"o her suboptimum processing algorithms are described in [20:
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12.4. Frequency of False Alarms and Detection Characteristics When
Using "k/n - 1" Criterion

Let us first determine the mean frequency of false alarms for a

single range circle. The sequence of ones and zeros formed in the circle

as a result of amplitude quantification of noise oscillation can be re-

garded as a sequence of independent tests with probabilities of success

(with fallout of a one) equal to Pw and failure (fallout of zero) equal
to gw = 1 - pw. These tests are independent due to the independence of
the values of noise separated by the repetition period of the system

whose value is always much greater than the noise correlation time.

Let us use the results of recurrent event theory to determine the

mean frequency of false alarms v' in the range circle [137, 208]. The

time interval between two sequential false alarms T'T is added from the 40f

delay T1 of event £1 and the delay Tk of event Ek (Fig. 12.3.2).

Tc determine the mean numbers of tests el = mI(TI)/T and 6k -

= ml(Tk)/T prior to the first realization of events el and Ek , respec-

tive-y, in a sequence of independent tests. let us consider the combin-

ation of probabilities fi(0 < i < ) of the onset of event e first on

the i-th test and function hn= h I that describes the probability of

recurrent event e in the first n tests.

The main number of tests before the first appearance of event c is

O= ih= h= . (12.4.1)

If Q(S)=k s, is a generating function for probabilities hi [208], then
e - Q(l).

To compare the equation that permits one to determine Q(s), let us

use the method described in [137]. It follows from determination of

values hn and fn that:

6(12.4.2)
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And the probability fn of the first realization of event e for the first

time on the n-th test can be expressed by probability hp, where p < n,

in the following manner.

For whole "k/k - 1" criteria, event Ek, which is a series of k ones
one after the other, first begins on the n-th test with simultaneous

fulfillment of the following conditions:

a) ones fell out in k tests with numbers from n - k + 1 to n;

b) a zero fell out in a test with n - k;

c) event 6k did not begin once prior to the (n - k - l)-th test.

The probabilities of these events comprise pk, gw and hnk I,

respectively. Therefore, the probability of a complex event is

P=gm .. (12.4.3)

By substituting (12.4.3) into (12.4.2) and replacing n by n + k + 1, 40

we find the recursion equation

+k+, - hn- + *go =0 (12.4.4)

with initial conditions

Multiplying (12.4.44) by sn+k+l, adding from zero to infinity with respect

to n and using the determination of the generating function, we will have

Q (S) - hS' [Q (S) - his fs]+P gQ (S) Sk I

Substituting the initial conditions into this equation and assuming that

s - 1, we determine

( I) (12.4.5)

The expression for el has a similar form and can be found from

(12.4.5), replacing Pw in it by gw and k by 1:
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=( -.)/ .)(12.4.6)

Using these expressions, let us determine the average length of

the period of false alarms in the range circle:

S-. (12.4.7)

Since usually lpw << 1, expressions (12.4.6) and (12.4.7) are simplified:

and

m, (Tt, r 2+1' F4T~'

It follows from the last expression that the end criterion slightly af-

fects the average length of the period of false alarms.

For fractional "k/n" criteria, 9k is calculated in a similar man- 40

ner, but the expression for fn is complicated.

Possible situations that lead to the appearance of an event for the

first time in the n-th test are shown for the "2/3" criterion in Table

12.4.1. The combination of ones and zeros in which event c did not oc-

cur once during all i tests is denoted in it by Ci (i.e., in the consid-

ered case there were never two ones in three adjacent positions). Since

the combination Ci appears with probability hi, then

1. h =gPg. P.

Substituting this expression into (12.4.2), we find

- .g. , = 0 (12 .4 .8 )

The initial conditions for this equation are as follows:
h, --- h, 'I9 h, Ip.,,= -I-- 24

h,, 2 - 2pg- 2p".
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Solving (12.4.8), we determine

k This expression is simplified at sufficiently small value of pw:

Table 12.4.1

Version of Number of Position
Situation n -4 X-3 M-2 1________

F irst 0 0Second C,., 0 0 1 0

Similar expressions for 6k are presented in Table 12.4.2 in the 40S

case of more complex criteria. It is easy to show that for the con-

sidered criteria at sufficiently small value of p

The expressions found above permit one to calculate the average

frequency of false alarms by all M4 range circles:

M M(1..0
;UdTm) ($I + SOT.~ 1..0

The outlined method of calculation cannot unfortunately be used in
those cases when a somnewhat different method of processing is used in

which range scanning is no longer divided into fixed range circles. In

this case the frequency of false alarms can be calculated on the basis
of the coincidence theory of pulse. of independent flows [204, 206].

Systems with low probability level of false alarms in which the

amplitude quantification threshold U0 !.1.5a, where a is the effective 410

voltage of noise, according to (6.3.3), are usually employed. And with

this condition the noise blips form a Poisson flow [2091, i.e., k flow

pulses-noise B5lip with the following probability-are observed during

time t
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Several different algorithms that realize the "k/n - 1" criterion

can be suggested to process this flow. One of them includes the fact

that a decision is made about detection of a signal at range r0 if the

following conditions are fulfilled simultaneously:

a) a normalized pulse in the i-th azimuth position corresponds to

range r0 ;

b) there are no pulses in the 1 previous positions which at least

partially coincide ("or linked") with it;

c) the (k - l)-th pulse is "linked" to the pulse in the i-th posi- 41:

tion earlier in (n - l)-th subsequent azimuth positions than 1 "non-

linking" is realized (Fig. 12.4.1).

t(L) i I, C

ft- 2)T o

I Cr1t IMU

Ct Or. r.'

011-
i .r

t

(ft2r I
t

Fig. 12.4.1. Analysis of received pulse flows for coincidence
by "3/4-2" criterion.
Key: (1) Extreme position of linked pulses to interval of
analysis.

in this case the probability of "nonlinking" of gw is determined as

the probability of the absence of a pulse front in an interval of length

to - 2 Tn (Fig. 12.4.1) and according to (12.4.13) comprises
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gm= -p= exp (-24.). (12.4.15)

If overlapping of the pulses by a value not less than T 3 is required for

linking, then

-~ gw- exp[-2X (r--a)].

Let us determine the frequency of false alarms in the considered

case [210].

If any pulse which is not linked to any of the pulses in the 1 pre- 41

vious scanning periods is fed to the input, analysis of this segment
for fulfillment of the detection criterion begins. Therefore, the
probability that the incoming pulse begins analysis is equal to the

probability gw of the absence of noise pulses during the 1 previous

periods. Because of this, if the average frequency of the pulse flow

being fed to the input comprises A, the flow of pulses that begin the
analysis has mean frequency Aa = Ag1 . This flow, as the initial flow

of noise blips, is Poisson. Each of the pulses that begin analysis can

cause a false alarm with probability F, due to which the mean frequency

of false alamrs comprises

v=.,F=ag'F. (12.4.16)

The probability of a false alarm F is obviously identical both in

the considered case and for a single range circle. And in the latter

case it is difficult to determine by using the results found previous-
ly. Actually, for a single range circle, we have a relation similar to

the preceding

:= r'.F -

from which it follows that:

On the other hand, the mean frequency of a flow of noise blips for a

single range circle is A' W, while the mean frequency of false

alarms is inverse to the mean period of false alarms (12.4.7):
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- 4

V' 1 1
V M-5 = T(o+I,)

in view of which

Substituting this expression into (12.4.16), we find 413

V 
(12.4.17)

P., (TI + 0.)

where el and 6k are determined the same as above, while p. and g. are

determined by formula (12.4.15).

10001,0

to

01 402 403 gas 4 p

Fig. 12.4.2. Dependence of attenuation factor of frequency of
false blips on probability of false blip for different detection
criteria (o-experimental points found by the statistical model-
ling method on the Minsk-l computer).

The effectiveness of this processing of noise pulses is character-

ized by attenuation factor of the frequency of false blips x = !,

whose value is higher, the less the value of p,, and the more rigid the

detection criterion (Fig. 12.4.2).

The probability of correct detection D is determined by the prob- 415

ability of the first fulfillment of criterion "k/n" at azimuth
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positions corresponding to the presence of a sequence of pulsed signals.

The probability of correct detection for a square-wave envelope of

a sequence of N pulsed signals is calculated by the recursion equations

described at the beginning of the given section and in which Pw is re-
placed by Pc, and

D--l-hN. (12.4.18)

This permits one to calculate the detection characteristics (Fig.

12.4.3).

1P .,24? - 414

J I

IV,

I 4S LS ISI,

0.5 15 2.5 34$ l5 . (45 352$ . £

Fig. 12.4.3. Detection characteristics with digital storage for dif-
ferent criteria.

The recursion equation with a nonsquare-wave envelope of the se- 415

quence has variable coeffitcients which depend on the probability pci

that the threshold level on the i-th azimuth position determined by

the shape of the envelope will be exceeded by the mixture (206). As

in analog storage (see item 1, section 10.6), the nonsquare-wave enve-

lope of the sequence can be replaced by an equivalent square-wave

envelope when calculating the detection characteristics and threshold

signals, which simplifies this calculation.
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12.5. Storage Capacity of Digital Storage Device

To realize the t"k/n1 11 criterion on a digital computer, one must
have a storage device (ZU) in which information is stored during n
repetition periods of the system. As already indicated in section 12.3,
this storage device can essentially be based on shift registers with
number of cells M = T/A(Fig. 12.3.1). However, since M is on the order

of 1,000 in practice, it is very difficult to make these registers.

Therefore, it is simpler to use a matrix storage device consisting

of M cells, each of which has n binary digits, which is attached to a

specific range circle and which realizes the sliding window in it, in
digital storage devices. This type of storage device in which a single
cell is allocated to each range circle, is called a storage device of 416
first type (ZU-l). The characteristic feature of this storage device

with low probabilities p~u consists in the fact that each cell of it
will not contain useful information (ones) the majority of the time on
the order of 1 - npw. Thus, for example, at pw = 0.01 and n = 3 the
cell will be filled with useful information during an average of 3% of

operating time.

Rejecting the principle of attaching the cell of the storage de-

vice to a specific range circle permits one to reduce the total number

of these cells by increasing their operating intensity. This principle
of organizing the memory leads to the second type of stoi ge device

(ZU-2). Analysis of ZU-2 operation [137] shows that its functioning

is described by queueing theory, which permits one to determine its

capacity and other characteristics.

The operation of a digital storage device proceeds in this case in

the following manner. If a pulse appears on some range circle, this
circle becomes "suspicious" and its coordinate is stored in one of the

free cells of the storage device. Analysis of the suspicious circle

begins from this moment by the "k/n-l" criterion, which is completed
upon the appearance of 1 zeros one after the other, after which the

cell is erased and can be engaged for analysis of pulsed flows in other

circles. If the pulse arrives from a range circle that is already un-

der analysis, the new cell is not occupied and a one is written in the
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corresponding digit of the previously occupied cell. As a result the
range code of the range circle being analyzed for the detection cri-
terion is stored in this cell and the structural characteristic of the
received sequence of pulsed signals is formed.

Thus, in order that analysis begin with the arrival of a pulse, it

should be preceded by 1 zeros, the probability of which is gjj. Contin-.1 uation of the analysis, i.e., the delay of zeros, is a random value.
The probability hn that the analysis will continue for more thann

periods is determined by formula (12.4.6), while the average time of

* analysis comprises

-IIf pw << 1, function hn is close to zero at n > 1. This means 417

that 1 zero follows immediately behind the pulse of the beginning of

analysis with high probability and analysis is completed within 1

periods.

As previously, we assume that the pulse flow being fed to the stor-
age device is Poisson and has intensity (mean repetition rate) X, which
is easily determined from the expression for the average number of
noise pulses during the repetition period of the system at M range

circles

The flow of pulses which begins the analysis is formed by thinning
("scattering") of the pulses of the input flow. As shown in the pre-

vious section, the flow intensity of the pulses that begin analysis

comprises

k-Ag'.(12.5.2)

Th, probability distribution of the number of ZU-2 cells occupied

for analysis with total number L in the steady mode is Erlang distri-

bution [1371:

375



P~m)=&T 7at O<m<L.lP(m)- a at m (12.5.3)

P(in) =0 at re>L, .

where according to (12.4.6), (12.5.1) and (12.5.2) with sufficiently

small value of p,, the distribution parameter is

;,M, (i1=l (I- ITjI.) . (12.5.4)

It follows from (12.5.3) that overflow of the storage device (i.e.,

the event when all the cells of the storage device are occupied upon

arrival of a pulse from a "new" range circle, occurs with probability

L

P (L) _ L' b" (12.5.5)
i=0

Normal operation of a digital storage device is possible only with

low probability of overflow, for which in the case of large values of 418

0 one must select the number of cells of the storage device from the

condition

L;- 6+ (2 -3) 1/. (12.5.6)

In this case the finite sum in (12.5.5) can be replaced by an in-

finite series, Erlang distribution (12.5.4) changes to Poisson distri-

bution, the probability of overflow is

P 1L  e-. (12.5.7)

and o has the meaning of the average number of occupied cells.

Having calculated the average number of occupied cells by formula

(12.5.4) and having been given the probability of overflow, one can

determine by means of the curves (Fig. 12.5.1) the required number of

ZU-2 cells. This number is considerably less than the number of ZU-l

cells, which is equal to the number of range circles M.

However, not only the structural characteristic of the received os- 419

cillations during n repetition periods of the system, but also the
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Fig. 12.5.1. Probability of overflow of ZU-2 as function of
the number of its cells.

coordinate of the "suspicious" range circle are stored in each ZU-2

cell. Therefore, if the ZU-l cell has n binary digits, the number of

binary digits of each ZU-2 cell is equal to n + E(log2M) + 1 z n +

+ 1og2M. Accordingly, total number of binary digits of the ZU- and

ZU-2 comprises Mn and L(n + log 2M). Their ratio

R , M, , (12.5.8)Y -- L (a + log. M) - -D (n + Ices M) - zP.1 (n + logs )

is inversely proportional to the probability of a noise blip. The ra-

tio of the number of ZU-2 cells to the average number of occupied cells

was denoted above by zL/* . Its value is easily determined by the

curves (Fig. 12.5.1). This ratio lies in the range from 1.15 to 2.6 at

0- 10-100 and P(L) = 10 to 102.

It follows from (12.5.8) that ZU-2 has fewer binary digits than

ZU-l only with low probabilities of a noise blip. For example, the

capacity of ZU-2 is less than that of ZU-1 only at p., <0.06-0.29 in

the case of whole detection criteria and at p. < 0.034-0.136 in the

case of fractional criteria (1 = 2 or 3) at M = 1,024-2,048 and

n < 5.
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We note that only the noise blips were taken into account above

when calculating the capacity of ZU-2 and the signal blips were not

taken into account. This led to some underestimation of capacity.

However, the number of expected targets on adjacent 1 azimuth positions

is usually much less than the number of noise blips during time 1T,

corresponding to these positions. Therefore, the signal blips can be

* I disregarded in the first approximation when calculating the capacity
of the ZU-2.
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List of Notations 431

A list of the notations together with their designations used in
the preceding text is presented below. The chapter, paragraph and itemWI in which these notations are introduced are indicated in the parenthe-
ses and a brief explanation of them is given. In some cases the nota-
tions have several interpretations and ambiguity is eliminated in the

* text where these notations are used. Many of the notations are found
throughout the book, whereas others (mainly not presented in this list)
are either generally accepted and therefore obvious or have limited

use within one section.
A(t) - transfer function (2.3.1).

a - half of spectral white noise intensity (1.2).
B - power gain in signal/noise ratio compared to optimum

filter for single signal (5.4.1); storage effect

(10.3.3).

b - product of bandpass by pulse length (2.5) and (7.4).
C - constant multiplier (1.3).

D - probability of correct detection (1.2); compression

coefficient of linear frequency-modulated pulse (3.2).
D14 - dynamic range of storage device (11.4).

d - read level of pulse response of filter and of its
bandpass (7.1).

di - elements of Barker's code (4.1.1) and binary pseudo-

random sequence (4.2.1).
E - signal energy (1.2).

EWx - whole part of number x (2.2.2).
F - probability of false alarm (1.2) and Doppler fre-

quency (3.8) and (6.5.1).
F(W) - energy spectrum or spectral intensity of noise (1.2).
G - loss in signal/noise ratio (2.4.2).

g - transfer coefficient of peak value of signal (3.3.2)

and (7.2); signal storage coefficient (5.4.2).

gc(gW) - probability that signal-noise mixture (or noise) will
not exceed quantification threshold (12.2).
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R(t) - complex amplitude of pulse characteristic (1.3).

hn - probability of absence of recursion event in first

n tests (12.4).

h(t) - pulse characteristic (1.3).

K(W) - transfer function of filter (1.5).

K(M) - amplitude-frequency characteristic of filter (1.5).

k - asymmetry coefficient (10.3.1); number of ones in n

samples of random quantified voltage (12.2).
"k/n-l" - logic detection criterion (12.3). 432

L - total number of memory cells (12.5).
L(x) - generalized k-order Laguerre polynomial (10.3.2).

1 - relative response threshold of threshold device (1.3)

and (10.2); number of zeros with digital detection

required to make decision on end of signal detection

(10.3).
M - ratio of length of delay in second and first recir-

culators of two-stage storage device (5.4.4) and
(9.1); number of range circles with digital detec-
tion (12.2); number of ZU-1 cells (12.5).

m - recirculator feedback coefficient (5.4.1).

mnk - initial n-order moment of voltage distribution uk
(1.2) and (10.4.1).

ml(x) - mean value of random value x (1.2).

N - number of pulsed signals in sequence (5.1.2); number

of elements of Barker code (4.1.1), number of period

of binary pseudorandom sequence (4.2.1) and number of
multiphase code (4.3).

Na - active number of stored pulses (5.4.1).
n - ratio of bandpasses of prestorage filter and recir-

culator feedback circuit (7.1).

nk(t) - instantaneous value of noise voltage at point k of

block diagram (1.2).

P(U) - integral probability distribution function (10.3.2).

Pc(PW) - probability of signal-noise mixture (or noise) ex-

ceeding quantification threshold (12.2).

Q - noise output transfer coefficient (2.3.4) and (5.4.1),
noise output storage coefficient (7.3).

q - ratio of peak value of signal to effective value of

noise (1.2) and (7.2).
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R - additional gain in signal/noise ratio (5.4.4).
R(x) - fractional part of number x (2.2.2).
Ra(t), - auto- and cross-correlation functions of noise (1.2).
Re (t)

r(t) - normalized correlation function of noise (2.3.3).

- spectral density of signal (1.5).

S() - amplitude spectrum of signal (1.5).
T - repetition quasi-period of pulsed signals (5.1.2).

U0  - response threshold voltage of threshold device (1.2).

Uk(t) - instantaneous value of voltage at point k of block
diagram (1.2).

Vk(t) - signal amplitude at point k of block diagram (1.3).
vk(t) - instantaneous value of signal voltage at point k of

block diagram (1.2).
v(t, T) - bell pulse (7.1).
W(u) - probability distribution density of voltage u (1.2)

and (10.2).
a - parameter of bell filter (3.6) and (10.2). 432

- time constant of integrating device (2.3.1) or of
amplifier (2.5).

k  -- mean square value of noise frequency nk (10.2).
r(x) - y-function (10.3.2).

Y - relative value of side blip of signal (3.6); excess
coefficient (10.3.1).

- time corresponding to width of range circle during

digital processing (12.3).
AF - amplifier (2.5) or filter (3.6) and (7.1) bandpass;

frequency resolution of system (3.9).
AW - frequency deviation (3.2); frequency shift in re-

circulator circuit (6.5.2).
6(t) - single pulse (1.3) and (7.1).

CK and el - criteria of beginning and end of signal detection

(12.3).
12 - mean output of fluctuating signal (6.4.1).
0 - average number of tests until appearance of event

(12.4).
- average number of occupied ZU-2 cells (12.5).

- n-order voltage distribution cumulant uk (10.3.1).
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A - similarity ratio (1.2).
- mean pulse recurrence frequency of flow (12.4).

X0 - mean wavelength (3.8).

Uk - weight multipliers for processing frequency-modulated

signal (3.6).
v - frequency of false alarms (10.2) and (12.4).

- coefficient of exponential weight function of storage

device (10. 1. 2 ).
p2 - ratio of mean outputs of fluctuating signal and

noise (6.4.1).
a2 - frequency difference (output) of noise (1.2).

T -length of pulsed signal (1.4) and (2.1.2).

To - length of elementary pulse of complex signal (4.1.1)
and (4.2.1).

(D) - probability integral (1.2).

OW) - Euler function in number theory (4.2.1); Gauss func-
tion (10.3.2).

-(w) phase spectrum of signal (1.5).

X mangle of phase rotation of by phase-shifting device
(2.2.2) and (6.5.2).

*(t, F) - joint correlation function of signal modulation (3.9).

0 (t) - normalized autocorrelation function of complex en-

velope of signal (4.1.1).

(w) -- phase characteristic of filter (1.5).

- angular Doppler frequency (6.5.1).

Abbreviations Used in Text and on Block Diagrams

AD - amplitude detector.

BM - balanced modulator.

VIRU - highly selective tuned amplifier.

VKU - cross-correlation device. 43

VS - time selector.

G(GVCh) - high-frequency generator.

GOI -- single video pulse generator.

GTI - timing pulse generator.

DULZ - dispersion ultrasonic delay line.

KV - square-law generator.

KVD - square-law detector.
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KGD - coherent detector.

LZ - delay line.

NIS - pulsed signal storage device.

NU - video frequency storage device.

OF - optimum filter.

OFOP - video frequency optimum filter for envelope of
pulsed signal sequence.

PU - threshold device.

RNU - radio-frequency storage device.

ROFOP - radio-frequency optimum filter for envelope of

pulsed signal sequence.

ROFOS - radio-frequency optimum filter for single pulsed

signal.
RF - radio-frequency filter.

Sm - frequency mixer.

T - flip-flop.

UO - limiting amplifier.

F - filter.

D - differentiating device.

Notations of Block-Diagram Components Used in Figures

Integrating device.

. Adder of voltages taken with indicated signs (u4 =

+ -ul + (-u2 ) + u3 - uI - u2 + U3 ).

Subtraction device.

Nonequivalence circuit (adder modulo 2). 43
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" elay device by time t

%Frequency generator fk.

Filter Fk with length of pulse reaction TR.

- Attenuator with transfer coefficient m(m < 1).

M Amplifier with amplification factor A.

4 JPhase rotation device by angle x(t).
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